
19999972018-07-24

1999997 - FAQ: SAP HANA Memory

Version 608 Type SAP Knowledge Base Article

Language English Master Language English

Release Status Released to Customer Category How To

Component HAN-DB (SAP HANA Database) Released On 27.07.2018

Please find the original document at https://launchpad.support.sap.com/#/notes/1999997

Symptom

You have questions related to the SAP HANA memory.

You experience a high memory utilization or out of memory dumps.

Environment

SAP HANA

Cause

1. Which indications exist for SAP HANA memory problems?
2. How can I collect information about the current SAP HANA memory consumption?
3. How can I collect information about the historic SAP HANA memory consumption?
4. Which important memory areas exist?
5. What does SAP HANA do if memory becomes scarce?
6. Which parameters can be used to limit the SAP HANA memory consumption?
7. How can I analyze problems related to the SAP HANA memory consumption?
8. Is it possible to extend the physical memory of a SAP HANA machine?
9. Which options exist to reduce the risk of SAP HANA memory issues?
10. How can I judge if the available memory is sufficient for the current system and a projected future growth?
11. Is it possible to monitor the memory consumption of SQL statements?
12. Is it possible to limit the memory that can be allocated by a single SQL statement?
13. What can I do if a certain heap allocator is unusually large?
14. How can I identify how a particular heap allocator is populated?
15. How often are OOM dumps written?
16. Where can I find more information regarding SAP HANA memory consumption?
17. How can the resident memory be smaller than the allocated memory?
18. What are typical reasons for significant size differences in memory vs. on disk?
19. Which general optimizations exist for reducing the SQL statement memory requirements?
20. How can the tables with the highest memory consumption be determined?
21. How much swap space should be configured for SAP HANA hosts?
22. What is memory garbage collection?
23. Why do I get an OOM although the SAP HANA allocation limits aren't reached?
24. How can I involve SAP to perform a detailed memory check?
25. Why is the allocated memory in some heap allocators very large?
26. Why does PlanViz show a high "Memory Allocated" figure?
27. Why does the delta storage allocate more memory with SAP HANA SPS >= 09?
28. Are there any special memory considerations for multitenant databases?
29. Which errors indicate memory issues on SAP HANA client side?
30. Can there be fragmentation in the heap memory?

1 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://launchpad.support.sap.com/#/notes/1999997

19999972018-07-24

31. Which indications exist that an OOM situation is triggered by the operating system?
32. What is the SAP HANA resource container?
33. How can the types in M_MEMORY_OBJECTS be mapped to allocators?
34. In which order are objects unloaded from the resource container?
35. Is the SAP HANA memory information always correct?
36. How can I get an overview of all recent OOM situations?
37. Is SAP HANA aware about dynamic memory changes?
38. Are all SAP HANA services part of the memory management?

Resolution

1. Which indications exist for SAP HANA memory problems?

Tracefiles with the following naming convention are created:

<service>_<host>.<port>.rtedump.<timestamp>.oom.trc
<service>_<host>.<port>.rtedump.<timestamp>.oom_memory_release.trc
<service>_<host>.<port>.rtedump.<timestamp>.compositelimit_oom.trc
<service>_<host>.<port>.rtedump.<timestamp>.after_oom_cleanup.trc
<service>_<host>.<port>.emergencydump.<timestamp>.trc (if memory related errors like "allocation failed"
are responsible)

The following error messages can indicate OOM situations. Be aware that some of the errors can also be
issued in other scenarios. To make sure that they are really memory related, you have to check the related
trace file.

SQL error -9300: no more memory

SQL error -10760: memory allocation failed

SQL error -10108: Session has been reconnected

SQL error 129 while accessing table <table_name> transaction rolled back by an internal error:

Memory allocation failed transaction rolled back by an internal error: exception during deltalog

replay. transaction rolled back by an internal error: TableUpdate failed transaction rolled back

by an internal error: exception 1000002: Allocation failed ; $size$=1191936; $name$=TableUpdate;

$type$=pool; $inuse_count$=2180; $allocated_size$=8180736; $alignment$=16# transaction rolled

back by an internal error: TrexUpdate failed on table <table_name> with error:

commitOptimizeAttributes() failed with rc=6900, Attribute engine

failed;object=<object_name>$delta_1$en, rc=6900 - enforce TX rollback transaction rolled back by

an internal error: TrexUpdate failed on table '<table_name>' with error: Attribute load

failed;index=<table_name>en,attribute='$trexexternalkey$' (207), rc=6923 - enforce TX rollback

transaction rolled back by an internal error: TrexUpdate failed on table '<table_name>' with

error: AttributeEngine: not enough memory, rc=6952 - enforce TX rollback

SQL error 403 while accessing table <table_name>

internal error: "<schema_name>"."<table_name>": [133] (range 2)

SQL error 1024 while accessing table <table_name>

SQL message: Allocation failed $REASON$

SQL error 2048 while accessing table <table_name>

column store error: search table error: [2] message not found column store error: search table

error: [9] Memory allocation failed column store error: search table error: [1999] general error

(no further information available) column store error: search table error: [2575] flatten

scenario failed; Allocation failed column store error: search table error: [6900] Attribute

engine failed column store error: search table error: [6923] Attribute load failed column store

error: search table error: [6952] Error during optimizer search column store error: search table

error: [6952] AttributeEngine: not enough memory column store error: [2450] error during merge

of delta index occurred column store error: [6924] Attribute save failed column store error:

merge delta index error: [6924] Attribute save failed

SQL error 3584 while accessing table distributed SQL error: [9] Memory allocation failed

distributed SQL error: [2617] executor: plan operation execution failed with an exception

SQL error 3587 at CON invalid protocol or service shutdown during distributed query execution:

2 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

[2613] executor: communication problem plan <plan> failed with rc 9: Error executing physical

plan: Memory allocation failed

persistence error: exception 70029020: ltt::exception caught while operating on

DISK_NCLOB:<id>:<id>

exception 1000002: Allocation failed ; $size$=<size>; $name$=Page; $type$=pool;

$inuse_count$=<count>; $allocated_size$=<size>

Error 423 has occurred on the current database connection "DEFAULT". Database error text: AFL

error: OmsTerminate: error=-28530, liveCache BAD_ALLOCATION in <routine> liveCache ERROR -

1028000

Delta merges (SAP Note 2057046) fail with the following errors:

2048 column store error: [2009] Memory allocation failed 2048 column store error: [2450] Error

during merge of delta index occurred 2048 column store error: [2484] not enough memory for table

optimization 2048 column store error: [6923] Attribute load failed 2048 column store error:

[6924] Attribute save failed 2048 column store error: [6952] AttributeEngine: not enough memory

Backups fail with errors like:

Allocation failed ; $size$=<size>; $name$=ChannelUtils::copy; $type$=pool; $inuse_count$=0;

$allocated_size$=0

The following entries in the SAP HANA database trace files (SAP Notes 2380176, 2467292) exist:

mergeDeltaIndex failed for <schema>:<table> (<id>) rc=245

memAllocSystemPages failed with rc=12, 12 (Cannot allocate memory)

A consistency check with CHECK_TABLE_CONSISTENCY (SAP Note 2116157) fails with:

5088: The check for some table failed due to memory allocation failure

(ERROR_MEMORY_ALLOCATION_FAILED)

The following thread states and locks indicate issues in the memory area (SAP Note 1999998):

Thread state Lock name

Mutex Wait HugeAlignmentPool

Mutex Wait LimitOOMReport

Mutex Wait PoolAllocator-MemoryPool

Semaphore Wait IpmmTaskWait

Semaphore Wait MemoryReclaim

The following SAP HANA alerts indicate problems in the memory area:

Alert Name Description

1
Host physical memory
usage

Determines what percentage of total physical memory available on the
host is used. All processes consuming memory are considered, including
non-SAP HANA processes.

12
Memory usage of name
server

Determines what percentage of allocated shared memory is being used by
the name server on a host.

40
Total memory usage of
column store tables

Determines what percentage of the effective allocation limit is being
consumed by individual column-store tables as a whole (that is, the
cumulative size of all of a table's columns and internal structures).

43
Memory usage of
services

Determines what percentage of its effective allocation limit a service is
using.

3 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://launchpad.support.sap.com/#/notes/2057046
https://launchpad.support.sap.com/#/notes/2380176
https://launchpad.support.sap.com/#/notes/2467292
https://launchpad.support.sap.com/#/notes/2116157
https://launchpad.support.sap.com/#/notes/1999998

19999972018-07-24

44 Licensed memory usage Determines what percentage of licensed memory is used.

45
Memory usage of main
storage of column store
tables

Determines what percentage of the effective allocation limit is being
consumed by the main storage of individual column-store tables.

55 Columnstore unloads
Determines how many columns in columnstore tables have been unloaded
from memory. This can indicate performance issues.

64
Total memory usage of
table-based audit log

Determines what percentage of the effective allocation limit is being
consumed by the database table used for table-based audit logging.

68
Total memory usage of
row store

Determines the current memory size of a row store used by a service.

SQL: "HANA_Configuration_MiniChecks" (SAP Notes 1969700, 1999993) returns a potentially critical issue
(C = 'X') for one of the following individual checks:

Check ID Details

M0230 Current memory utilization (%)

M0231 Time since memory utilization > 95 % (h)

M0240 Current swap utilization (GB)

M0241 Time since swap utilization > 1 GB (h)

M0245 Swap space size (GB)

M0410 Current allocation limit used (%)

M0411 Current allocation limit used by tables (%)

M0413 Time since allocation limit used > 80 % (h)

M0415 Curr. max. service allocation limit used (%)

M0417 Time since service alloc. limit used > 80 % (h)

M0420 Heap areas currently larger than 50 GB

M0421 Heap areas larger than 100 GB (last day)

M0422 Heap areas larger than 200 GB (history)

M0423 Heap areas with potential memory leak

M0425 Pool/RowEngine/CpbTree leak size (GB)

M0426 Row store table leak size (GB)

M0430 Number of column store unloads (last day)

M0431 Time since last column store unload (days)

M0435 Number of shrink column unloads (last day)

M0437 Size of unloaded columns (GB, last day)

M0440 Shared memory utilization of nameserver (%)

M0445 Number of OOM events (last hour)

M0450 Tables with memory LOBs > 2 GB

M0453 Size of non-unique concat attributes (GB)

M0454 Size of non-unique concat attributes (%)

M0455 Unused large non-unique concat attributes

4 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://launchpad.support.sap.com/#/notes/1969700
https://launchpad.support.sap.com/#/notes/1999993

19999972018-07-24

M0460 Calc engine cache utilization (%)

M0470 Heap allocators with many instantiations

M0472 Booked vs. allocated memory (%)

M0480 Address space utilization (%)

M0530 Shared memory row store size (GB)

M0645 Number of OOM tracefiles (last day)

M0746 Histories with primary key

M0747 Number of zero entries in HOST_SQL_PLAN_CACHE

M0748 History of M_CS_UNLOADS collected

SQL: "HANA_TraceFiles_MiniChecks" (SAP Note 2380176) reports one of the following check IDs:

Check ID Details

T0300 Memory allocation failed

T0302 Out of memory (OOM)

T0304 Out of memory (OOM) exception

T0306 Operating system cannot allocate memory

T0308 Statement memory limit reached

T0310 Resource container shrink

T0312 Leaking allocator destroyed

T0320 Dubious NUMA configuration

SQL: "HANA_Tables_ColumnStore_UnloadsAndLoads" (UNLOAD_REASON = 'LOW MEMORY') (SAP Note
1969700) shows significant amounts of column unloads for the considered time frame.

2. How can I collect information about the current SAP HANA memory consumption?

SAP Note 1969700 provides the following SQL statements to collect information related to the current SAP
HANA memory allocation:

SQL statement name Description

SQL: "HANA_Memory_Caches" Overview of existing SAP HANA caches (SAP Note 2502256)

SQL:
"HANA_Memory_ContextMemory"

Current context memory utilization, useful to map used memory to
connections

SQL:
"HANA_Memory_MemoryObjects"

Current memory objects in SAP HANA resource container (heap + row
store); only used for areas taking advantage of caching, so temporary
SQL areas like Pool/itab aren't part of it.

SQL: "HANA_Memory_Overview"
Provides information about current memory allocation (including heap,
row store, column store, allocation limit and license limit)

SQL:
"HANA_Memory_TopConsumers"

Lists the current top memory consumers (e.g. tables and heap areas)

SAP Note 1698281 provides a Python script that can be used to collect detailed SAP HANA memory
requirements. In order to get precise data, columns are actually loaded into memory rather than only relying
on estimations.

5 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/2380176
https://launchpad.support.sap.com/#/notes/1969700
https://launchpad.support.sap.com/#/notes/1969700
https://launchpad.support.sap.com/#/notes/1698281

19999972018-07-24

If you don't have SQL access (e.g. on the secondary site of a SAP HANA system replication environment),
you can use the operating system tool hdbcons (SAP Note 2222218) and 'mm l -S' to display the allocators
sorted by the inclusive memory size. Sorting by the more important exclusive size in use is not possible.
Starting with SAP HANA SPS 11 you can also query this information via _SYS_SR_SITE_<site_name>. See
SAP Note 1999880 ("Is it possible to monitor remote system replication sites on the primary system?") for
details.

3. How can I collect information about the historic SAP HANA memory consumption?

SAP Note 1969700 provides the following SQL statements to collect information related to the historic SAP
HANA memory allocation:

SQL statement name Description

SQL: "HANA_Memory_Reclaims"
Information about historic reclaim operations (i.e.
defragmentations or shrinks)

SQL:
"HANA_Memory_TopConsumersInHistory"

Lists historic top memory consumers (e.g. tables and heap
areas)

SQL:
"HANA_Memory_OutOfMemoryEvents"

Overview of out-of-memory (OOM) situations since last startup

SQL: "HANA_SQL_SQLCache"
Starting with SAP HANA Rev. 102.01 memory information is
available in the SQL cache (if memory tracking is activated)
that can be evaluated.

SQL: "HANA_SQL_ExpensiveStatements"

Lists memory consumption of executed SQL statements (SPS
08) Relevant output columns: MEM_USED_GB,
MEM_PER_EXEC_GB Both expensive SQL statement trace
and statement memory tracking needs to be activated, see "Is
it possible to limit the memory that can be allocated by a single
SQL statement?" in this SAP Note for more information.

4. Which important memory areas exist?

The following memory areas are most important:

Memory
Area

Context Level Details

Physical
memory

operating
system

global Total amount of memory physically available on host level (typically RAM)

Virtual
memory

operating
system

process
Total amount of memory allocated by all processes held both in physical
memory and in paging area on disk

Resident
memory

operating
system

process
Total amount of memory allocated by all processes held in physical
memory, large allocations are usually fine (SAP Note 2081473)

Allocated
memory

SAP HANA process

Total amount of memory allocated by the SAP HANA processes, limited
by the configurable SAP HANA global allocation limit Less relevant for
SAP HANA memory analysis because allocated, but unused memory can
be re-used when required

Used
memory

SAP HANA process
Total amount of memory in use by the SAP HANA processes, relevant to
understand SAP HANA memory footprint

Shared Memory that can be accessed by different processes, e.g.: Specific row SAP HANA global

6 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://launchpad.support.sap.com/#/notes/2222218
https://launchpad.support.sap.com/#/notes/1999880
https://launchpad.support.sap.com/#/notes/1969700

19999972018-07-24

memory store components (tables, catalog, free) Nameserver topology

Heap
memory

SAP HANA process
Memory exclusively accessible by threads of a single process (e.g.
indexserver), e.g.: Column store Row store indexes Intermediate results
Temporary structures SAP HANA page cache

Code SAP HANA global Code

Stack SAP HANA process Stack

In normal SAP HANA environments no paging happens and SAP HANA is the only major memory allocator
on the host. The following conditions are typically met:

Physical memory > virtual memory•
Virtual memory = resident memory >= allocated memory•
Allocated memory = shared memory + allocated heap memory•
Used memory = shared memory + used heap memory•
Code, stack: Usually negligible sizes•

For efficiency reasons SAP HANA frees allocated memory in a "lazy" way and so the allocated memory can
grow up to the available memory and the global allocation limit while the used memory remains at a much
lower level.

From a memory analysis perspective we can usually focus on the used memory and assume that the
allocated memory is released whenever required.

The following picture illustrates the general SAP HANA memory structure:

7 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

5. What does SAP HANA do if memory becomes scarce?

Unlike other databases (e.g. Oracle: PGA in memory -> PSAPTEMP on disk) SAP HANA doesn't allocate
disk space if certain operations require more memory than available. Instead the following actions are taken:

Action hdbcons Details

Reclaim - return
free memory to
OS

Free memory segments are returned to operating system. This is helpful in
cases where a SAP HANA memory request is larger than the individually
available segments in the SAP HANA heap memory. The operating system is
able to perform a defragmentation and provide larger segments afterwards. This
operation isn't recorded in database trace (SAP Note 2380176). You can
determine reclaim activities using the "mm ipmm -d" option of hdbcons (SAP
Note 2222218). The following information indicates reclaim at the specified
point in time: T=2016-12-08 04:42:43.722 ...: Process <pid> requested self
compaction A self compaction is a reclaim that is triggered by the process itself.

Reclaim -
defragmentation

mm gc -
f

Garbage collection is triggered so that allocated memory is defragmented and
freed for re-use. It is executed automatically when not sufficient free memory is
available. For a manual / explicit control of memory garbage collection see
question "What is memory memory garbage collection?" below. See SAP Note
SAP Note 2169283 for more information related to SAP HANA garbage
collection. Releasing the memory back to the operating system requires the
IPMM lock, so memory allocations can be blocked (e.g. with "ReclaimMemory"
locks, see SAP Note 1999998). This operation isn't recorded in database trace
(SAP Note 2380176). You can determine reclaim activities using the "mm ipmm
-d" option of hdbcons (SAP Note 2222218). The following information indicates
reclaims at the specified point in time: T=2016-12-08 04:42:43.722 ...: Process
<pid> requested self compaction

Reclaim -
resource
container shrink

resman
s

Resource container is shrunk: Non-critical heap areas are reduced (e.g. the
SAP HANA page cache Pool/PersistenceManager/Persisten
tSpace(0)/DefaultLPA/Page or compiled L code) Column store unloads are
triggered (SAP Note 2127458); this activity can significantly impact the
performance. Automatic shrinks are recorded in the database trace (SAP Note
2380176) and can be found by checking for the following information:
Information about shrink

Termination of
transactions

Transactions are terminated with error if their memory requests can no longer
be fulfilled.

OOM dump
An out-of-memory (OOM) dump is written (if the time defined in parameter
global.ini -> [memorymanager] -> oom_dump_time_delta is exceeded since the
last OOM dump)

Memory garbage collection and shrinks are locally done by the thread that detects the need for these tasks.
In the following cases a specific MemoryCompcator thread is used for that purpose (SAP Note 2114710):

Memory garbage collection and shrink requests coming from another SAP HANA service•
Memory garbage collection triggered by explicitly configured parameters global.ini ->
[memorymanager] -> gc_unused_memory_threshold_abs and global.ini -> [memorymanager] ->
gc_unused_memory_threshold_rel.

•

SQL: "HANA_Memory_Reclaims" (SAP Note 1969700) can be used to display reclaim runtimes and
processed memory sizes.

8 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://launchpad.support.sap.com/#/notes/2114710
https://launchpad.support.sap.com/#/notes/1969700

19999972018-07-24

6. Which parameters can be used to limit the SAP HANA memory consumption?

The following parameters can be used to limit the overall or process-specific SAP HANA memory allocation:

Parameter Unit Details

global.ini ->
[memorymanager] ->
global_allocation_limit

MB

This parameter limits the overall memory consumption of SAP HANA. The
default value depends on the available physical memory and the SAP HANA
revision level: SPS 06 and below: 90 % of physical memory SPS 07 and
higher: 90 % of first 64 GB, 97 % of remaining physical memory

<service>.ini ->
[memorymanager] ->
allocationlimit

MB
%

This parameter limits the memory consumption of the related SAP HANA
process (<service>). If "%" is specified at the end of the parameter value
(without preceeding blank), the value is interpreted as percentage of RAM,
otherwise it is interpreted as MB. The standalone statistics server uses a
value of "5%" per default. All other services including indexserver use the
following allocation limit per default: Rev. <= 92: 90 % of physical memory
Rev. >= 93: global_allocation_limit As an example, SAP Note 1862506
suggests an increase of the allocation limit of the standalone statistics server
to "10%", "15%" or "20%" in order to come around OOM situations caused
by the default 5 % limit.

Normally there is no need to touch these settings and there are other solutions to come around memory
issues.

7. How can I analyze problems related to the SAP HANA memory consumption?

SAP Note 1840954 describes steps to analyze and resolve SAP HANA memory issues.

SAP Note 1984422 describes how to analyze an out of memory (OOM) dump file.

SAP Note 2222718 provides a decision-tree approach for analyzing problems in the SAP HANA memory
area.

The SAP HANA Troubleshooting and Peformance Analysis Guide at SAP HANA Troubleshooting and
Performance Analysis Guide covers - among others - the analysis of memory related issues.

8. Is it possible to extend the physical memory of a SAP HANA machine?

In general the configured physical memory depends on factors like hardware, scenario and available CPUs
and must not be changed. SAP Note 1903576 describes when and how you can apply for an exception.

9. Which options exist to reduce the risk of SAP HANA memory issues?

The following options exist to reduce the risk of SAP HANA memory issues:

Action /
Feature

Details

Cleanup of
technical
tables

Make sure that house-keeping is set up for technical, administration and communication
tables so that they don't consume unnecessary memory. See SAP Note 2388483 for more
information.

Archiving
Implement archiving strategies for business data. Have a look at the Information Lifecycle
Management area for more details.

9 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://launchpad.support.sap.com/#/notes/1840954
https://launchpad.support.sap.com/#/notes/1984422
https://launchpad.support.sap.com/#/notes/2222718
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/latest/en-US/7d28bc8c4e54413caf2716731494da88.html
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/latest/en-US/7d28bc8c4e54413caf2716731494da88.html
https://launchpad.support.sap.com/#/notes/1903576

19999972018-07-24

S/4HANA
S/4HANA significantly reduces redundancy of table data (e.g. FI: elimination of BSEG index
tables like BSIS, BSID, BSAS and BSAD) and so it has a positive impact on the memory
footprint. See the Simplification List for S/4HANA for further details.

Hybrid LOBs

Hybrid LOBs are not loaded into memory when the size exceeds a defined limit, so it is
usually beneficial for memory consumption if you take advantage of this feature. SAP Note
1994962 describes how columns defined as memory LOBs can be converted to hybrid
LOBs. SAP ABAP table columns with LRAW data type are mapped to either LOB or
VARBINARY. As VARBINARY always has to be loaded into memory, this can have an
effect on the memory utilization. See SAP Note 2220627 ("Is VARBINARY also a LOB
Type?") for more information. SAP Note 2375917 describes how a VARBINARY column
can be converted into a LOB in order to save memory.

Reduction of
number of
indexes

Check for indexes with high memory requirements (e.g. using SQL:
"HANA_Indexes_Overview", ORDER_BY = 'SIZE' from SAP Note 1969700) and check if
you can drop some of these indexes. A focus can be put in the following areas: Secondary
indexes that were created in order to optimize the performance of non-HANA databases.
BW: If DSOs are changed from "standard" to "write-optimized", a primary index is no longer
required. BW: Check if you can flag the property “Allow duplicate records” of write-optimized
DSOs because this will eliminate the need for multicolumn key indexes (/BIC/A…00KE).
Check if large fulltext indexes are really required. For example, a large index
REPOSRC~SRC (on a column with name $_SYS_SHADOW_DATA) may exist to support
the ABAP Sourcecode Search (SAP Note 1918229) and can be removed via transaction
SFW5. Dropping indexes can significantly impact performance, so you should test the
effects carefully before permanently dropping indexes.

Transition from
multi-column
to single-
column
indexes

Multi-column indexes require much more memory than single-column indexes, because an
additional internal column (concat attribute) needs to be created. Check for indexes with
high memory requirements (e.g. using SQL: "HANA_Indexes_Overview", ORDER_BY =
'SIZE' from SAP Note 1969700) and check if you can redefine some multi-column indexes
to single-column indexes. Often it is a good compromise to define an index only on the most
selective column. Further columns like MANDT would significantly increase the memory
requirements.

Reduction of
concat
attributes

Concat attributes are specific internal columns that can be created for various reasons.
Some of them may no longer be required. See SAP Note 1986747 for more information.
You can run SQL: "HANA_Indexes_ColumnStore_RedundantConcatAttribute
s" (SAP Note 1969700) in order to define redundant concat attributes - i.e. multiple concat
attributes created on the identical set of columns (with the identical order) and use the
generated DROP_COMMAND to drop one of these duplicates. A typical reason for this
behavior for SID tables in BW environments is described in SAP Note 2376550

Paged
attributes

Paged attributes are columns that can be loaded into the memory piece-wise. All columns
apart from primary key and internal columns can be defined as paged attributes. For more
details see SAP Note 1871386.

Inverted hash
indexes

As of SAP HANA 1.0 SPS 09 you can reduce the size of multi-column indexes using the
inverted hash feature. This can reduce the size of the internal concat attribute that is
required for multi-column indexes. See SAP Note 2109355 for more information.

Inverted
individual
indexes

Starting with SAP HANA 2.0 SPS 03 primary keys and unique indexes can be defined as
inverted individual indexes which eliminate the need to have a potentially large concat
attribute and so the index size can be significantly reduced. See SAP Note 2600076 for
more details.

Table data is compressed efficiently in column store, so moving tables from row store to
column store usually reduced the memory allocation significantly. Furthermore table
columns are only loaded into the column store memory if required and not during startup.

Move large
tables to
column store

10 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Therefore you can check if large tables exist in row store that can be moved to column
store. Be aware that tables with a significant amount of modifications can suffer from
performance regressions if they are moved to column store. In case of SAP standard tables
you should usually double-check with SAP if the move to the column store is an option.

Analysis of
large heap
areas

Some heap areas may be larger than required, e.g. due to bugs or inadequate
configuration. See question "What can I do if a certain heap allocator is unusually large?"
below for more details.

SQL statement
optimization

SQL statements processing large amounts of data or accessing data inefficiently can be
responsible for a significant memory growth. See SAP Note 2000002 related to SQL
statement optimization. See question "Which general optimizations exist for reducing the
SQL statement memory requirements?" below for more information.

Transactional
problems

Long running transactions or idle cursors can impact the garbage collection and result in a
high amount of versions or histories. See SAP Note 2169283 for more information about
symptoms, analysis steps and resolutions in the area of garbage collection.

Fragmentation
(row store)

Fragmentation effects can result in an unnecessary row store size. See SAP Note 1813245
for more information on checking the row store fragmentation and reorganizing the row
store.

Fragmentation
(heap
memory)

See "Can there be fragmentation in the heap memory?" in order to check if there is an
unusual high fragmentation of the heap memory (> 15 %). Open a SAP incident in case you
require assistance to understand and minimize the fragmentation.

Large delta
storage

Many records in the delta storage of tables can increase the size of the column store. See
SAP Note 2057046 and make sure that delta merges are running properly.

Delta merge
and optimize
compression

Delta merges (SAP Note 2057046) and optimize compression runs (SAP Note 2112604)
temporary require a much larger memory footprint, typically you have to expect that the
double size of the underlying table (partition) is needed. Therefore you have to make sure
that the size of the table (partitions) is sufficiently small that doubling it is possible without
running into a memory bottleneck. Typically you can achieve this by proper data
management (see SAP Note 2388483) and by partitioning particularly large tables (SAP
Note 2044468).

Column store
compression

See SAP Note 2112604 and make sure that the column store tables are compressed
optimally.

Unload
configuration

It is possible to influence the unload behavior so that less critical objects are unloaded first
("UNLOAD PRIORITY <level>" setting for tables) . The following parameter controls the
minimum size of the SAP HANA resource container that needs to be retained (SAP Note
1993128): indexserver.ini -> [memoryobjects] -> unload_lower_bound If this size has
reached the defined limit and more memory outside of the resource container is required
(e.g. because of an expensive SQL statement), an out-of-memory situation is issued. It is
usually not required to configure this parameter because the statement memory limit has
similar effects.

Data aging
Data aging (SAP Note 2416490) allows to load only current data into memory while older
data is kept on disk. This feature is only available for a defined set of tables.

Dynamic
tiering

Using dynamic tiering you can mark data as hot, warm and cold. Typically only hot data
resides in the SAP HANA memory. See SAP Note 2140959 for more information related to
dynamic tiering.

Smart data
access

Based on smart data access SAP HANA can retrieve data from tables in external
databases (e.g. Sybase, Oracle or SAP HANA). This reduced the need to load all accessed
data into SAP HANA. See SAP Note 2180119 for more information regarding smart data
access.

11 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Extension
nodes

Starting with SAP HANA 1.00 SPS 12 and 2.00 SPS 01 it is possible to configure extension
nodes for tables containing no hot data. By overloading the extension node it is possible to
share a limited amount of memory by a high amount of tables. See SAP Note 2415279 for
more information.

Table
distribution

If some hosts in a scale-out scenario suffer from a high memory consumption you can re-
locate tables or table partitions from hosts with a high memory consumption to hosts with a
lower memory consumption. See section "Table Distribution in SAP HANA" of the SAP
HANA Administration Guide for more information.

Global
allocation limit

The following parameter defines the maximum overall memory size which can be allocated
by the SAP HANA instance: global.ini -> [memorymanager] -> global_allocation_limit The
default value depends on the available physical memory and the SAP HANA revision level:
SPS 06 and below: 90 % of physical memory SPS 07 and higher: 90 % of first 64 GB, 97 %
of remaining physical memory Particularly on SPS 06 and below and hosts with a lot of
memory this can result in a significant amount of unused memory (e.g. SPS 06, 1 TB
memory, 90 % allocation limit, up to 900 GB allocated by SAP HANA, 10 GB allocated by
OS and other components -> 90 GB unused). If you observe a significant amount of
permanently unused memory you can increase the global_allocation_limit parameter (e.g.
to "95%" or "97%" for SPS 06 and below). Make sure that you don't increase the allocation
limit to a value that results in paging. If multiple SAP HANA instances run on the same host,
you have to make sure that the sum of all configured global allocation limits doesn't exceed
the available memory.

OS
configuration

Make sure that the operating system configuration is in line with the SAP recommendations.
See SAP Note 2000003 ("How can the configuration and performance of the SAP HANA
hardware, firmware and operating system be checked?") for more information. It is
particularly important that the ulimit package isn't installed in SLES environments, because
it may define address space limitations (e.g. SOFTVIRTUALLIMIT < 100 % in
/etc/sysconfig/ulimit). The following command should return nothing, otherwise it has to be
uninstalled: rpm -qa | grep ulimit Make sure that no address space limitations are defined
for the SAP HANA processes. You can use the following commands to determine the
process ID of the indexserver via ps (<indexserver_pid>) and subsequently check for the
configured address space limitations: ps -ef | grep indexserver egrep 'Soft|space'
/proc/<indexserver_pid>/limits The correct output without limitation looks similar like the
following example: Limit Soft Limit Hard Limit Units Max address space unlimited unlimited
bytes See also SAP Note 1980196 that discusses OOM errors due to an inadequate setting
of the Linux parameter /proc/sys/vm/max_map_count. If multiple SAP HANA instances (or
other applications with high memory requirements) run on the same node, make sure that
the overall assigned memory (e.g. the global allocation limits for the SAP HANA instances)
doesn't exceed the available physical memory. See SAP Note 2123782 which suggests a
pagepool size reduction from 16 GB to 4 GB in Lenovo / GPFS environments. Make sure
that the limit for stack is not set to a high / unlimited value (SAP Note 2488924) as it can
result in a significant address space consumption.

Strict NUMA
memory
binding

If the operating system issues on OOM although there is sufficient memory available, an
erroneous strict NUMA memory binding of SAP HANA processes can be responsible. See
SAP Note 2358255 for details. This issue is fixed with Rev. 122.02. See SAP Note 2470289
for more information related to NUMA in SAP HANA environments.

SAP HANA
patch level

The memory allocation of certain heap areas is SAP HANA patch level dependent. Newer
revision levels may include optimizations that reduce the memory allocation. Therefore it is
generally useful to make sure that a reasonably new revision level is implemented.

Using fewer hosts with a larger amount of physical memory each will reduce the risk that
specific SQL statements with a high memory requirement will result in OOM situations,
because there is a larger amount of available memory on each host. So for example 2 hosts

Scale-out
layout

12 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

with 1 TB memory each would have a lower risk of OOM situations compared to 8 hosts
with 256 GB each.

Statistics
server
optimizations

See SAP Note 2147247 (-> "How can the memory requirements of the statistics server be
minimized?") for details.

BW DTP delta
initialization
request
optimization

If you face a high memory consumption related to DTP activities in BW, you can check SAP
Note 2230080 for possible optimizations.

Bypassing
SAP HANA
bugs

Make sure that you are on reasonably new SAP HANA Revision levels and avoid situations
that can cause memory related issues due to SAP HANA bugs. Particularly consider the
following scenarios: Impacted Revisions Details 1.00.90 - 1.00.97.03 1.00.100 - 1.00.102.00
When a column store table (partition) reaches the 2 billion record limit (SAP Note 2154870)
a SAP HANA overflow bug can result in extremely high memory allocation requests like:
Failed to allocate 2305843008945258496 byte. Failed to allocate 18446744073667608592
byte. As a consequence SAP HANA will run into an out-of-memory situation even if
significant amounts of memory are still available. Therefore follow the general strong
recommendations and take appropriate actions (e.g. data reduction or partitioning) to avoid
that a table (partition) reaches the 2 billion record limit. various Check "What can I do if a
certain heap allocator is unusually large?" in order to identify SAP HANA bugs that are
responsible for memory leaks and other reasons of unnecessary high memory allocation.
1.00.110 - 1.00.112.05 1.00.120 - 1.00.122.01 If the row store size (shared memory) is
significantly larger than the total size of row store tables, you should check if the SAP HANA
bug described in SAP Note 2362759 applies (memory freed by delete operations is no
longer re-used). <= 1.00.122.14 <= 2.00.012.03 2.00.020 A bug in shared memory
accounting in MDC environments (SAP Note 2101244) can result in operating system
related OOM situations that could have been prevented if SAP HANA had performed
reclaims / shrinks. See SAP Note 2588395 for more information. <= 2.00.024.00 If the total
memory size of a workload class is limited, unjustified OOMs can happen. See SAP Note
2629536 for more information. See also "Is the SAP HANA memory information always
correct?" -> M_CONTEXT_MEMORY below for scenarios where a wrong implicit memory
booking can result in unjustified OOM terminations.

Sizing review
If all above checks didn't help to reduce the OOM situations you should double-check the
SAP HANA sizing. See SAP Note 2000003 ("What has to be considered for sizing SAP
HANA?") for more information.

10. How can I judge if the available memory is sufficient for the current system and a
projected future growth?

There are some general rules of thumb available that can help to understand if the memory is properly sized
in an existing system, e.g.:

Memory size should optimally be at least two times the total size of row store and column store.•
The memory used by SAP HANA should be significantly below the SAP HANA allocation limit.•

All these rules are only rough guidelines and there can always be exceptions. For example, lome large
S/4HANA systems can work absolutely fine even if 65 % of the memory is populated with table data.

At this point we won't use these rules but instead describe a more detailed approach based on a real-life SAP
Suite on HANA system with 4 TB of physical memory.

13 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

In a first step it is important to understand how much memory is allocated by the different main areas. This
information is retrieved via SQL: "HANA_Memory_TopConsumers" (AGGREGATE_BY = 'AREA'):

|AREA |SIZE_GB |SIZE_PCT|CUM_SIZE_PCT|

|Column store| 1011.72| 60.55| 60.55|

|Heap area | 446.89| 26.74| 87.30|

|Row store | 128.77| 7.70| 95.01|

|Code | 6.62| 0.39| 95.41|

|Stack | 1.58| 0.09| 95.50|

We can see that around 1.1 TB are used by the column store, 0.1 TB is used by the row store and additional
0.4 TB are used by heap areas (that are not integral part of other areas). The total memory utilization of SAP
HANA is significantly below 2 TB, so we can already conclude that there is a lot of safety margin for
exceptional situations and future growth before the 4 TB memory limit is reached.

More detailed information can be determined with SQL: "HANA_Memory_Overview" (SAP Note 1969700).
The output for the same system looks like:

--

|NAME |TOTAL_GB |DETAIL_GB |DETAIL2_GB |

--

|User-defined global allocation limit|not set | | |

| | | | |

|License memory limit | 4000| | |

| | | | |

|License usage | 3000| 1554 (2014/03/01-2014/03/31)| |

| | | 2873 (2014/04/01-2014/04/30)| |

| | | 2849 (2014/05/01-2014/05/31)| |

| | | 3000 (2014/06/01-2014/06/27)| |

| | | | |

|Physical memory | 4040| 4040 (hlahana21) | |

| | | | |

|HANA instance memory (allocated) | 3450| 3450 (hlahana21) | |

| | | | |

|HANA instance memory (used) | 1639| 1639 (hlahana21) | |

| | | | |

|HANA shared memory | 121| 121 (hlahana21) | |

| | | | |

|HANA heap memory (used) | 1508| 1508 (hlahana21) | 355 (Pool/NameIdMapping/RoDict) |

| | | | 192 (Pool/AttributeEngine-IndexVector-Sp-Indirect) |

| | | | 105 (Pool/AttributeEngine-IndexVector-Single) |

| | | | 102 (Pool/PersistenceManager/PersistentSpace(0)/DefaultLPA/Page)|

| | | | 85 (Pool/RowEngine/QueryExecution) |

| | | | 73 (Pool/AttributeEngine/idattribute) |

| | | | 66 (Pool/Statistics) |

| | | | 58 (Pool/AttributeEngine) |

| | | | 44 (Pool/AttributeEngine-IndexVector-SingleIndex) |

| | | | 38 (Pool/RowEngine/CpbTree) |

| | | | |

|Column store size | 1011| 1011 (hlahana21) | 315 (KONV) |

| | | | 84 (BSEG) |

| | | | 42 (ZARIXSD5) |

| | | | 36 (VBFA) |

| | | | 32 (ZARIXSD2) |

| | | | 31 (EDID4) |

| | | | 29 (BSIS) |

14 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://launchpad.support.sap.com/#/notes/1969700

19999972018-07-24

| | | | 28 (CDPOS) |

| | | | 25 (ZARIXMM2) |

| | | | 18 (KONP) |

| | | | |

|Row store size | 129| 129 (hlahana21) | 37 (A726) |

| | | | 30 (TST03) |

| | | | 12 (EDIDS) |

| | | | 7 (SRRELROLES) |

| | | | 5 (EDIDC) |

| | | | 4 (D010TAB) |

| | | | 4 (SWNCMONI) |

| | | | 3 (/SDF/MON) |

| | | | 3 (DD03L) |

| | | | 2 (REPOSRC) |

| | | | |

|Disk size | 1194| 1194 (global) | 320 (KONV) |

| | | | 104 (BSEG) |

| | | | 42 (ZARIXSD5) |

| | | | 36 (VBFA) |

| | | | 32 (ZARIXSD2) |

| | | | 30 (EDID4) |

| | | | 30 (TST03) |

| | | | 29 (BSIS) |

| | | | 27 (CDPOS) |

| | | | 25 (ZARIXMM2) |

--

The heap memory size is reported with 1508 GB which is much more than the 447 GB from further above.
The reason is that in the second result list all heap areas are considered, also the ones that are the basis for
the column store. This means, most of the 1508 GB heap allocation overlaps with the column store size. The
shared memory size of 121 GB overlaps with the row store.

The allocated instance memory of 3450 GB is much higher than the used instance memory of 1639 GB,
because SAP HANA tends to keep allocated memory allocated as long as there is no memory shortage.
From a sizing perspective the used memory matters.

So also the memory overview output indicates that the used memory is significantly below 2 TB and far away
from the 4 TB memory limitation.

A closer look into the top heap areas (SQL: "HANA_Memory_TopConsumers", AREA= 'HEAP',
AGGREGATE_BY = 'DETAIL') shows the following top allocators for the same system:

-- |DETAIL

|SIZE_GB

|Pool/PersistenceManager/PersistentSpace(0)/DefaultLPA/Page | 105.70|

|Pool/RowEngine/QueryExecution | 84.32

|Pool/Statistics | 65.97

|Pool/JoinEvaluator/TranslationTable | 24.90| --

The Page allocator being responsible for a memory utilization of 106 GB is a kind of file system buffer that
can reduce its size without problems whenever there is a memory shortage. So we can assume that another
around 80 GB could be saved if required. This means that the total required memory is 1550 GB.

Conclusion: Even if the used memory size doubles it is still well below the memory limit (3100 GB vs. 4000
GB) and can also handle exceptional situations (e.g. significant growth of certain heap allocators) without
running into memory pressure.

15 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

It is useful to repeat this analysis from time to time and also check the historic memory utilization (SQL:
"HANA_Memory_TopConsumers_History") to get a good understanding of the memory requirements over
time.

11. Is it possible to monitor the memory consumption of SQL statements?

You can activate the statement memory tracking feature by setting the following parameters:

global.ini -> [resource_tracking] -> enable_tracking = on global.ini -> [resource_tracking] ->

memory_tracking = on

Changes to both parameters can be done online, no restart is required.

When memory tracking is active, the following memory information is available:

Patch level Table Column

>= Rev.
1.00.80

M_EXPENSIVE_STATEMENTS MEMORY_SIZE

>= Rev.
1.00.94

M_ACTIVE_STATEMENTS
M_PREPARED_STATEMENTS

ALLOCATED_MEMORY_SIZE USED_MEMORY_SIZE
AVG_EXECUTION_MEMORY_SIZE
MAX_EXECUTION_MEMORY_SIZE
MIN_EXECUTION_MEMORY_SIZE
TOTAL_EXECUTION_MEMORY_SIZE

>= Rev.
1.00.94 >=
Rev.
1.00.100

M_CONNECTION_STATISTICS
M_SQL_PLAN_CACHE

AVG_EXECUTION_MEMORY_SIZE
MAX_EXECUTION_MEMORY_SIZE
MIN_EXECUTION_MEMORY_SIZE
TOTAL_EXECUTION_MEMORY_SIZE

Due to a bug with Rev. 1.00.90 to 1.00.96 (SAP Note 2164844) the setting will only work if additionally also
the statement_memory_limit parameter (see below) is set.

Before Rev. 1.00.94 the expensive statement trace could only be triggered by runtimes of SQL statements.
Starting with Rev. 1.00.94 you can use the following parameter to trigger the recording of expensive SQL
statements in M_EXPENSIVE_STATEMENTS based on the memory consumption:

global.ini -> [expensive_statement] -> threshold_memory = <bytes>

12. Is it possible to limit the memory that can be allocated by a single SQL statement?

Starting with SPS 08 you can limit the memory consumption of single SQL statements. As a prerequisite you
need to have the statement memory tracking feature enabled as described above. Additionally you have to
set the following parameter in order to define the maximum permitted memory allocation per SQL statement
and host:

global.ini -> [memorymanager] -> statement_memory_limit = <maximum_memory_allocation_in_gb>

For more details see SAP Note 2222250 ("How can workload management be configured for memory?").

13. What can I do if a certain heap allocator is unusually large?

See SAP Note 1840954 for some general advice.

The following table contains allocator-specific recommendations. Normally there is no need to perform
manual analysis and optimization, so make sure that you are in a pathologic or critical situation before you

16 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://launchpad.support.sap.com/#/notes/2164844
https://launchpad.support.sap.com/#/notes/2222250
https://launchpad.support.sap.com/#/notes/1840954

19999972018-07-24

consider any changes:

Allocator Purpose Analysis Steps

AllocateOnlyAllocator-unlimited/F
LA-
UL<3145728,1>/MemoryMapLevel2Blocks
(SAP HANA 1.0) AllocateOnlyAllocator-
unlimited/F
LA-
UL<24592,1>/MemoryMapLevel3Nodes
(SAP HANA >= 2.0)

Internal memory
management

This allocator contains information for
managing the SAP HANA memory. Normally
no optimization is necessary. A high memory
utilization or frequent memory
defragmentations in the system can result in
the allocation of smaller memory chunks,
which will result in a larger allocator. Sizes up
to 5 % of the global allocation limit are typically
acceptable. Higher values are typically a
consequence of a high memory pressure. In
this case you should consider the following
optimizations: Avoid manual memory
defragmentations (hdbcons 'mm gc -f',
gc_unused_memory_threshold_* parameters)
Avoid resource container shrinks (hdbcons
'resman shrink', unload_upper_bound
parameter) or make sure that reasonable (not
too small) thresholds) are used. Avoid manual
reductions of parameters async_free_target
and async_free_threshold (SAP Note
2169283). Analyze and optimize the general
memory situation (e.g. in terms of data volume,
memory leaks, intermediate results) in order to
reduce the amount of implicit memory
defragmentations or resource container
shrinks. If you experience a very high (and
possibly rising) memory consumption due to
this allocator, you can determine details with
the following hdbcons commands (SAP Note
2222218): SAP HANA 1.0: mm level2map SAP
HANA >= 2.0: mm pagetable Large sizes of
this allocator can indicate the risk of running
into address space limitations. 1 GB of
allocator size represents around 170 GB of
address space. See "Which indications exist
that an OOM situation is triggered by the
operating system?" below for more details.
SAP HANA will run into address space related
OOM situations at latest when the following
limits are reached: Architecture Unlimited stack
Limit size Intel no 768 GB Intel yes 512 GB
IBM on Power (no BIGMEM) no 96 GB IBM on
Power (no BIGMEM) yes 64 GB IBM on Power
(BIGMEM) no 384 GB IBM on Power
(BIGMEM) yes 256 GB Starting with SAP
HANA 2.0 the memory management is
optimized and particularly large sizes of this
allocators are less likely.

17 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Pool/AdapterOperationCache
SDQ adapter
operation cache

This heap allocator is used by the Smart Data
Quality (SDQ) adapter operation cache. See
SAP Note 2502256 for more information about
SAP HANA caches in general and the adapter
operation cache in particular. The cache can
be disabled via: scriptserver.ini ->
[adapter_operation_cache] ->
enable_adapter_operation_cache = no

Pool/Auditing Auditing

This allocator stores auditing related
information (SAP Note 2159014). In case of
large and rising sizes you can consider to
disable auditing as a temporary workaround.

Pool/BWFlattenScenario
BW infocube
conversion

This allocator is used during conversions of
infocubes to HANA optimized cubes using
BW_CONVERT_CLASSIC_TO_IMO_CUBE.
This procedure is executed when a classic
infocube is converted to an in-memory
optimized infocube using transaction
RSMIGRHANADB. Increased memory
consumption is normal when large infocubes
are converted. After the conversion of the
existing infocubes is finished, executing this
procedure is no longer required and the
allocator size reduces.

Pool/AttributeEngine/Delta
Pool/AttributeEngine/Delta/BtreeD
ictionary Pool/AttributeEngine/Delta/Cache
Pool/AttributeEngine/Delta/Intern
alNodes
Pool/AttributeEngine/Delta/LeafNo
des Pool/ColumnStore/Delta/BtreeDicti
onary Pool/ColumnStore/Delta/Btreeindex
Pool/ColumnStore/Delta/Cache
Pool/ColumnStore/Delta/InternalNo
des Pool/ColumnStore/Delta/LeafNodes
Pool/ColumnStoreTables/Delta/Btre
eDictionary
Pool/ColumnStoreTables/Delta/Btre
eindex
Pool/ColumnStoreTables/Delta/Cach
e Pool/ColumnStoreTables/Delta/Inte
rnalNodes
Pool/ColumnStoreTables/Delta/Leaf
Nodes

Delta storage
components

See SAP Note 2057046 and make sure that
delta merges are properly configured and
executed, so that the delta storage size of the
tables remains on acceptable levels.

Pool/AttributeEngine
Pool/AttributeEngine/idattribute
Pool/AttributeEngine-IndexVector-
BlockIndex Pool/AttributeEngine-
IndexVector-
BTreeIndex Pool/AttributeEngine-
IndexVector-

Column store
components

These allocators are responsible for parts of
the column store. Their memory allocation will
implicitly reduce if you reduce the amount of
table data in column store (archiving, cleanup,
reduction of indexes, ...)

18 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Single Pool/AttributeEngine-IndexVector-
SingleIndex Pool/AttributeEngine-
IndexVector-
Sp-Cluster Pool/AttributeEngine-
IndexVector-
Sp-Indirect Pool/AttributeEngine-
IndexVector-
Sp-Prefix Pool/AttributeEngine-
IndexVector-
Sp-Rle Pool/AttributeEngine-IndexVector-
Sp-Sparse
Pool/ColumnStore/Main/Compressed/
Cluster
Pool/ColumnStore/Main/Compressed/
Indirect
Pool/ColumnStore/Main/Compressed/
Prefix
Pool/ColumnStore/Main/Compressed/
Rle Pool/ColumnStore/Main/Compressed/
Sparse
Pool/ColumnStore/Main/Dictionary/
RoDict Pool/ColumnStore/Main/Dictionary/
ValueDict
Pool/ColumnStore/Main/Index/Block
Pool/ColumnStore/Main/Index/Singl
e Pool/ColumnStore/Main/PagedUncomp
ressed Pool/ColumnStore/Main/Rowid
Pool/ColumnStore/Main/Text/DocObj
ects
Pool/ColumnStore/Main/Uncompresse
d Pool/ColumnStoreTables/Main/Compr
essed/Cluster
Pool/ColumnStoreTables/Main/Compr
essed/Indirect
Pool/ColumnStoreTables/Main/Compr
essed/Prefix
Pool/ColumnStoreTables/Main/Compr
essed/Rle
Pool/ColumnStoreTables/Main/Compr
essed/Sparse
Pool/ColumnStoreTables/Main/Dicti
onary/RoDict
Pool/ColumnStoreTables/Main/Dicti
onary/ValueDict
Pool/ColumnStoreTables/Main/Index
/Block
Pool/ColumnStoreTables/Main/Index
/Single
Pool/ColumnStoreTables/Main/Paged
Uncompressed
Pool/ColumnStoreTables/Main/Rowid
Pool/ColumnStoreTables/Main/Text/
DocObjects

19 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Pool/ColumnStoreTables/Main/Uncom
pressed Pool/NameIdMapping/RoDict

Pool/ColumnStore/Main/Rowid/build
-reverse-index
Pool/ColumnStoreTables/Main/Rowid
/build-reverse-index

Temporary
structure when
creating reverse
index on
$rowid$ column

This allocator is used during specific
operations like optimize compression runs
(SAP Note 2112604) when a reverse index is
created on the $rowid$ column.

Pool/AttributeEngine/Transient
Pool/AttributeEngine/Transient/up
dateContainerConcat

Transient
column store
information

These allocators contain temporary column
store data. They can grow significantly in case
of index creation (SAP Note 2160391). The
behavior is improved with with SAP HANA
1.00.122.11 SAP HANA 2.0. As a workaround
you can consider creating indexes at a time
when the underlying tables are empty or filled
to a minor extent.

Pool/BitVector

Basic data
structure (e.g.
temporary
query results,
columnar data,
transactional
info of column
tables)

Can be linked to problems with garbage
collection in column store, see "Which options
exist to reduce the risk of SAP HANA memory
issues?" -> "Transactional problems" for
details.

Pool/CacheMgr/CE_ScenarioModelCac
he

Calculation
engine model
cache

This heap allocator is used for the calculation
engine model cache (SAP Note 2502256).

Pool/CacheMgr/CS_QueryResultCache
[Realtime]
Pool/CacheMgr/CS_QueryResultCache
[TimeControlled]

Query result
cache

These heap allocators are linked to the query
result cache (SAP Note 2014148).

Pool/CacheMgr/CS_StatisticsCache
Column store
statistics cache

This heap allocator is used for the column
store statistics cache (SAP Note 2502256).

Pool/CacheMgr/DataStatisticsAdvis
erCache

Data statistics
adviser cache

This heap allocator is used for the data adviser
statistics cache (SAP Note 2502256).

Pool/commlibDefAllocator
Pool/ncCommLibDefAllocator

Network
communication
support objects

This allocator can grow in case a large number
of network channels exist (due to inter-node or
inter-service communication), see SAP Note
2222200 for more information related to SAP
HANA network. A memory leak issue was fixed
with SAP HANA 1.00.122.05. Another memory
leak is fixed with SAP HANA 2.00.021.

This allocator can grow with SAP HANA
2.00.020 and 2.00.021 due to a memory leak
related to hash functions (e.g.
HASH_SHA256). You need to restart SAP
HANA in order to reclaim the allocated
memory. The related call stack module (that
can be checked via an hdbcons allocator block
list as described in SAP Note 2222218) is

Pool/Crypto
Encryption
related data
structures

20 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Crypto::Provider::CommonCryptoPro
vider::initHash.

Pool/CSPlanExecutor/PlanExecution
Intermediate
data structures

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. This allocator is used
during plan execution of a database request as
a fallback allocator used in cases where
specific statement allocators aren't available.

Pool/CSRowLocking
Column store
row locking

This allocator is typically large if many record
locks exist. You can check the current record
locks via SQL:
"HANA_Locks_Transactional_Current
" (SAP Note 1969700). The allocator is purged
asynchronously during delta merge (SAP Note
2057046) and column unload (SAP Note
2127458). Only an unload guarantees that all
entries for the related table are completely
purged. There is no possibility to map
allocations to specific tables. In systems with
mass modifications it is normal that this
allocator can grow and remain at a certain size
although there are no current record locks. In
general this does neither indicate a memory
leak nor a bottleneck. In case of permanent
sizes of more than 50 GB a more detailed
analysis is useful.

Pool/CS_TableSearch
Query optimizer
related data
structures

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible.

Pool/DeletedPageList

Recording of
DELETE
operations in
row store

This allocator is typically quite small, but in
context of the problem described in SAP Note
2253017 (SAP HANA Rev. 100 - 102.02) it can
already become critical in case of small sizes
>= 2 MB.

Pool/DocidValueArray

Set of rowids
and related
values in
context of join
engine

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that join SQL statements are executed as
memory-efficient as possible.

These allocators are used by the data
provisioning server (dpserver) that is used in
smart data integration (SDI) scenarios (SAP
Note 2400022). The following known reasons
for large and rising allocator sizes exist: SAP
Note 2542700: Memory leak accessing remote
cluster tables (SAP HANA <= 1.00.122.12, <=
2.00.012.02, <= 2.00.021) SAP Note 2643641:

Pool/DPServerFramework
Pool/DPServerStatsRequestIfacerAl
locator

Data
provisioning
server memory

21 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Risk of increased memory requirements in
context of streaming

Pool/DSO/DSORead
Pool/DSO/DSOUpdate

DSO activation
/ rollback

These allocators temporarily store data during
DSO operations in BW like
DSO_ACTIVATE_PERSISTED,
DSO_ROLLBACK_PERSISTED,
DSO_ACTIVATE_CHANGES and
DSO_ROLLBACK_CHANGES. Once these
activities are finished, the majority of the
allocated memory is released.

Pool/DynamicCachedView
Pool/DynamicCachedView/ViewMatchi
ng

Dynamic result
cache
information

These allocators contain information related to
the dynamic result cache (SAP Note 2506811).

Pool/entityCache
MDX entity
cache

This allocator contains MDX entity cache
information. You can use SQL:
"HANA_Memory_Caches_Overview" and SQL:
"HANA_Memory_Caches_Entries" (SAP Note
1969700) with CACHE_NAME =
'MdxEntityCache' to display and understand
details about the current utilization of the entity
cache. The life time of entries in the entity
cache doesn't depend on the execution of the
underlying SQL statements, they are
maintained independently. The entity cache is
part of the SAP HANA resource container that
is shrunk whenever the memory gets scarce. It
is unloaded with a higher priority than columns
so that a large cache size isn't necessarily
critical. See SAP Note 2502256 for more
information related to SAP HANA caches.

Pool/ESX
ESX runtime
data

The Extended SQL Executor (SQL) uses
Pool/ESX for storing runtime data. SAP Note
2597818 describes a SAP HANA memory leak
with Revisions 2.00.000 to 2.00.023 that can
result in a growth of this heap allocator in
context of PlanViz executions (SAP Note
2073964).

Pool/ExecutorPlanExecution
Intermediate
result sets

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that join SQL statements are executed as
memory-efficient as possible.

The field element selection (FEMS)
compression is used for BW queries with
execution modes 2 and 3 in order to reduce
the amount of data transferred to the BW
OLAP engine within SAP HANA. In some
cases FEMS can result in increased memory
requirements. See BW on HANA and the
Query Execution Mode for more information
related to BW query execution modes. As a

Pool/FemsCompression/CompositeFem
sCompression

FEMS
compression

22 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

local workaround you can check if executing
the query in question in execution mode 0 is an
acceptable alternative. Also execution mode 2
instead of 3 is worth a try, because the
underlying FEMS activities are different and
may not run the same issues. As a global
workaround you can disable FEMS
compression in method
_GET_TREX_REQ_FLAGS_READ of class
CL_RSDRV_TREX_API_STMT by
commenting the following line with a leading '*'
(see pilot SAP Note 1828751):
r_trex_req_flags = r_trex_req_flags +
33554432. As this will lead to disadvantages in
other areas (e.g. increasing amount of
transmitted data), you should undo this change
once you have understood and fixed the
reason for the high FEMS related memory
consumption.

Pool/Filter
intermediate
result sets

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that join SQL statements are executed as
memory-efficient as possible. This allocator is
used in different contexts, e.g.: Pruning (join
engine, OLAP engine, TableUpdate,
TRexApiSearch) Hierarchy filter analysis In
general the memory should be released once
the related database request is finished.

Pool/FRSWLockAllocator
Read write
locks

Starting with SAP HANA 1.00.122.13 and
2.00.010 read write locks are no longer stored
in the Pool/Statistics allocator, instead they are
maintained in the dedicated
Pool/FRSWLockAllocator ("fast read slow write
lock allocator"). In case of a large size you can
check for read write lock details via SQL:
"HANA_Locks_Internal_LockWaits_Ov
erview" (LOCK_TYPE = 'READWRITELOCK')
available via SAP Note 1969700. With SAP
HANA 2.0 the space consumption of this
allocator is reduced compared to SAP HANA
1.0. The following known issues with a high
number of recorded locks exist: SAP HANA <=
1.00.122.17, <= 2.0 SPS 00: PlanInfoLock
SAP HANA <= 1.00.122.17, <= 2.0 SPS 00:
PreferredRoutingLocations See SAP Note
1999998 for more information related to SAP
HANA locks.

This allocator contains hierarchy cache and
MDX hierarchy cache information that is
populated when you query SAP HANA views
with hierarchies. You can use SQL:

Pool/hierarchyBlob
Hierarchy
cache, MDX
hierarchy cache

23 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

"HANA_Memory_Caches_Overview" and SQL:
"HANA_Memory_Caches_Entries" (SAP Note
1969700) with CACHE_NAME =
'%HierarchyCache' to display and understand
details about the current utilization of the
hierarchy cache. The life time of entries in the
hierarchy cache doesn't depend on the
execution of the underlying SQL statements,
they are maintained independently. The
hierarchy cache is part of the SAP HANA
resource container that is shrunk whenever the
memory gets scarce. It is unloaded with a
higher priority than columns so that a large
cache size isn't necessarily critical. If
hierarchies / caching isn't required, you can
disable it by setting cache=false in the
hierarchy definitions, 'Drill Down Enablement' =
' ' (instead of 'Drilldown') in SAP HANA Studio
or globally by disabling it with the following
parameter: indexserver.ini -> [cache] ->
hierarchies_transactional_cache_e
nabled = 'false' See SAP Note 2502256 for
more information related to SAP HANA
caches.

Pool/IndexRebuildAllocator
Memory area
for row store
index rebuilds

This issue can happen with SAP HANA 1.0
SPS 07 and SPS 08. See SAP Note 2005478
and set the following parameter as a
workaround in order to disable row store index
rebuilds during startup: indexserver.ini ->
[row_engine] -> use_jobex_index_rebuild =
false

Pool/IndexVector Pool/IndexVectorAligned
Temporary
index vector
structures

This allocator is used in different contexts like
table optimizations, column load, column write,
binary import or index creation. A temporary
large value is typically caused by delta merges
(SAP Note 2057046) of tables with paged
attributes (SAP Note 1871386), e.g. in the
context of data aging (SAP Note 2416490).

Pool/itab Pool/itab/VectorColumn
Column store
(intermediate)
search results

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. If no explanation for a
large and rising Pool/itab allocator is found, an
itab leak trace can be activated as described in
SAP Note 2074981 (SAP internal).

Pool/JERequestHandler

Temporary
structure during
translation table
creation

This allocator is required in certain scenarios
when translation tables are created to support
join operations. See SAP Note 1998599 for
more information related to translation tables.

Global join See question "Which general optimizations Pool/JoinEvaluator

24 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

engine allocator exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. This is the main join
engine allocator that should normally not be
used for significant memory allocations.
Instead sub-allocators are used. If you see a
high allocation, please check if also some sub-
allocators are significantly filled. If yes, proceed
with the analysis based on the
Pool/JoinEvaluator/* sub allocators as
described below. SAP Note 2370588 describes
a problem that results in an increased size for
Pool/JoinEvaluator, but at the same time also
the sub-allocator
Pool/JoinEvaluator/JECalculate/Re
sults is extremely large. A large size of
Pool/JoinEvaluator has been observed with
SAP HANA Rev. 122.05 in combination with
fast data access (FDA), so you can consider
deactivating FDA for FOR ALL ENTRIES as
described in SAP Note 2399993 via
rsdb/prefer_join_with_fda and
dbs/hdb/prefer_join_with_fda = 0.

Pool/JoinEvaluator/DictsAndDocs
Join engine
dictionaries

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. This allocator is usually
linked to SAP HANA SQL statement
processing in call stack modules like
AttributeEngine::AttributeApi::je
GetDictAndDocs and
JoinEvaluator::JEDistinctAttribut
e::getDictAndDocs. Among others the following
scenarios can be responsible for a significant
growth of this allocator: Check if inefficient
joins of partitioned tables are responsible and
reduce or optimize partitioning. Check for
COUNT DISTINCT operations on large
(partitioned) tables and columns with many
distinct values (SAP Note 2000002 -> "What
are typical approaches to tune expensive SQL
statements?" -> "High runtime of COUNT
DISTINCT"). This allocator may also grow
when an index is created because the join
engine takes over some data processing.

Pool/JoinEvaluator/JECalculate
Pool/JoinEvaluator/JECalculate/Tm
pResults
Pool/JoinEvaluator/JECreateNTuple
Pool/JoinEvaluator/JEPreAggregate

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. If you can't directly

Join engine
intermediate
data structures

25 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Pool/JoinEvaluator/JEStep1
Pool/JoinEvaluator/JEStep2
Pool/JoinEvaluator/NTuple

identify the SQL statements responsible for the
memory growth, you can use SQL:
"HANA_Threads_ThreadSamples_Filte
rAndAggregation" (THREAD_DETAIL =
'%(JE%', AGGREGATE_BY = 'HASH,
THREAD_DETAIL') available via SAP Note
1969700 to check for SQL statements with a
significant processing time in related join
engine functions. Consider setting the hint
USE_OLAP_PLAN (SAP Note 2142945) for
testing purposes in order to check if a switch
from join engine to OLAP engine works and
results in a reduced memory consumption.
Huge allocations in
Pool/JoinEvaluator/JECreateNTuple
in combination with anti joins (e.g. EXCEPT)
and call stacks in
JoinEvaluator::LoopJob::findJoinP
airsTL_native can be caused by a SAP HANA
bug that is fixed with Rev. 1.00.122.12 and
2.00.010. With SAP HANA >= 2.0 SPS 02 the
fix is enabled per default. With SAP HANA <=
2.0 SPS 01 the fix is disabled per default and
can be activated with hint
CONSERVATIVE_CS_ANTI_JOIN_ESTIMAT
ION or globally with the following parameter:
indexserver.ini -> [sql] ->
conservative_cs_anti_join_estimat
ion_enabled = true As a workaround the
NO_GROUPING_SIMPLIFICATION hint (SAP
Note 2142945) can be used. If triggered by BW
/ MDX, you can also disable the RSADMIN
parameter MDX_F4_USE_SQL (SAP Note
1865554).

Pool/JoinEvaluator/JEPlanData/des
erialized

Join engine
intermediate
data structures
involving inter-
node
communication

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. Check if the distribution of
involved tables across nodes is already optimal
or if you can adjust it so that less inter-node
data transfer is required. See SAP Note
2081591 for more information about SAP
HANA table distribution. Consider setting the
hint USE_OLAP_PLAN (SAP Note 2142945)
for testing purposes in order to check if a
switch from join engine to OLAP engine works
and results in a reduced memory consumption.

Pool/JoinEvaluator/JEAssembleResu
lts Pool/JoinEvaluator/JEAssembleResu
lts/Results
Pool/JoinEvaluator/JECalculate/Re

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-

Join engine
results

26 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

sults Pool/JoinEvaluator/JERequestedAtt
ributes/Results

efficient as possible. If you can't directly
identify the SQL statements responsible for the
memory growth, you can use SQL:
"HANA_Threads_ThreadSamples_Filte
rAndAggregation" (THREAD_DETAIL =
'%(JE%', AGGREGATE_BY = 'HASH,
THREAD_DETAIL') available via SAP Note
1969700 to check for SQL statements with a
significant processing time in related join
engine functions. This allocator can grow
considerably when late materialization isn't
used. For some reasons (e.g. bugs described
in SAP Note 1975448) the following
parameters may be increased, resulting in
higher memory requirements: indexserver.ini -
> [search] -> late_materialization_threshold
indexserver.ini -> [search] ->
late_materialization_threshold_fo
r_insert Unset these parameters as soon as
you have another solution in place (e.g. a
revision level with included bug fix). Consider
setting the hint USE_OLAP_PLAN (SAP Note
2142945) for testing purposes in order to
check if a switch from join engine to OLAP
engine works and results in a reduced memory
consumption. Other reasons for a high memory
consumption are: SAP Note 2174236 (bug in
SAP HANA Rev. 91, fixed with Rev. 92) SAP
Note 2260972 (inappropriate implementation of
statistics server procedures) SAP Note
2370588 (inappropriate coding of S/4HANA
migration routines) Increased allocation due to
missing calc view unfolding in context of
BETWEEN filter with decimal notation (fixed
with >= 1.00.122.15, >= 2.00.012.04 and
2.00.024)

Pool/JoinEvaluator/PlanDataAttrVa
ls/Deserialized

Join engine
results

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. This allocator is used
when join engine results have to be sent from
one node to another in scale-out scenarios.

Translation tables are required to map value
IDs of join column values. SAP Note 1998599
describes how they can be configured in order
to optimize memory consumption. In certain
scenarios a significant memory requirement is
linked to caching of translation tables related to
joins with temporary tables. As of SAP HANA
Rev. 102.02 translation tables related to
temporary table joins are no longer kept. With

Pool/JoinEvaluator/TranslationTab
le

Join column
mapping

27 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

SAP HANA SPS 09 and Rev. 97.02 and higher
you can set the following parameter:
indexserver.ini -> [joins] ->
cache_temp_translation_tables = 'false' See
SAP Note 2217936 for more information.

Pool/JoinEvaluator/ValueList
Intermediate
join engine
value list

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. An increased size during
an S/4HANA migration can be a consequence
of the issue described in SAP Note 2370588.

Pool/L/jit/MetaData Pool/L/llang/Debuggee

Intermediate
Llang structures
(for compiled
programs / for
interpreting and
debugging)

These heap allocators contain L related
information. With SAP HANA <= 2.00.023 the
Pool/L/llang/Debuggee allocator is not part of
the SAP HANA resource container and so it
can't be shrinked in case of low memory. This
scenario can become critical in context of the
SAP HANA Execution Engine (HEX) activation
(SAP Note 2570371) with SAP HANA 2.0 SPS
02 when many parsed queries are still
contained in the SQL cache and so the
allocator size can be high. Starting with SAP
HANA 2.00.024 this problem is fixed and the
allocator will be part of the resource container
so that it can be shrinked when memory is
required. As a workaround for SAP HANA <=
2.00.023 you can set the following SAP HANA
parameters: indexserver.ini -> [execution] ->
compilation_strategy = always indexserver.ini -
> [execution] -> asynchronous_compilation =
false Clearing the SQL cache (SAP Note
2124112) can be an immediate action to
reduce the allocator size with SAP HANA <=
2.00.023: ALTER SYSTEM CLEAR SQL PLAN
CACHE Be aware that clearing the SQL cache
will result in increased parsing requirements
and so it should only be performed in
exceptional situations.

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. Llang queries may be
manually created or are results of FOX,
SQLScript or HEX (SAP Note 2570371). The
allocator can grow if a large amount of strings
or CLOB values is processed. The name of the
Llang program can be found in the call stack,
e.g. _SYS_PLE:20160126114423_4338930:T
MPDATA in the following case: 20:
0x00007fdd4b55b8b1 in

Pool/L/llang/Runtime/Local
Intermediate
Llang script
results

28 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

ljit::dynamic/_split_main_0+0x387
0 at fox/cen_"SAPSR3"."_SYS_PLE:201601
26114423_4338930:TMPDATA".
cv053_fox_LLangView.56A7F0213FB8E
FC7E10000000AAA0052:0 (<unknown>) If
required, you can activate a trace for the ljit
component on debug level (see SAP Note
2119087): indexserver.ini -> [trace] -> ljit =
'debug'

Pool/LVCAllocator/LVCContainerDir
Pool/LVCAllocator/LVCContainerDir
/LVCContainer_<id>
Pool/LVCAllocator/LVCObjectPageDi
r Pool/LVCAllocator/LVC_ObjectPageD
ir

liveCache data

These allocators hold the actual liveCache
data and so their sizes should correspond to
the amount of liveCache data. See SAP Note
2593571 for more information related to
liveCache.

Pool/malloc/hdbnameserver
Temporary
nameserver
data structures

This allocator is used for temporary
nameserver data structures that are e.g. used
in context of Python activities triggered by
actions like a full system info dump (SAP Note
2573880) or a performance trace (SAP Note
2520774).

Pool/malloc/libdbrsa16_r.so
Allocations of
RSA library for
Sybase IQ

The libdbrsa16_r.so library is used for RSA
functionalities in context of Sybase IQ remote
accesses. In SAP HANA contexts these
accesses are usually related to smart data
access (SDA, SAP Note 2180119).

Pool/malloc/libc.so.6
Linux libc
allocations

This allocator is used when memory allocation
is done by the Linux libc.so library, e.g. in the
context of file system accesses like __alloc_dir
and System:UX:opendir. If you see this
allocator in the context of an out-of-memory
situation, you can assume that it is only a
victim and not responsible for OOM. If for
example the compileserver issues an OOM
when allocating memory for
Pool/malloc/libc.so.6, you should check the
indexserver at first, because very likely it has
consumed all available memory before.

Pool/malloc/libhdbbasement.so
Column store
data structures

A large and growing size can be caused by the
following reasons: A memory leak in SAP
HANA <= 1.00.122.06 can result in growth of
this allocator related to module
TrexThreads::InheritableLocalStor
age::cloneMap. This problem is fixed with SAP
HANA 1.00.122.07. This can also happen in
consistency check contexts (SAP Note
2547516). Using the function profiler with SAP
HANA <= 1.00.122.16, <= 2.00.024.01 and
2.00.030 can result in a growing allocator size
(SAP Note 2637828).

Pool/malloc/libhdbcalcengine.so Calculation See question "Which general optimizations

29 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Pool/malloc/libhdbcalcengineapi.s
o

engine
intermediate
results

exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. The following individual
reasons can be responsible for increased
allocator sizes: If you observe a growth of this
allocator in combination with calculation engine
processing (e.g. TREXviaDBSL, call stack
modules like
TrexCalculationEngine::Optimizer:
:optimizeHierarchyJoinOverMultipr
ovider and
TrexCalculationEngine::CombineNon
RootAggrOverMpRule::applyAggrOver
HierachyJoin), you face a SAP HANA bug that
is fixed with SAP HANA Rev. 97.02 and 102.
SAP Note 2374935 describes a memory leak
in the context of calculation scenario modeler
objects that is fixed with SAP HANA Rev.
112.07 and 122.04.

Pool/malloc/libhdbcalcenginepops.
so

Intermediate
results during
calculation
engine plan
operation
processing

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. In most cases
cePopInternalJoin will be the main contributor
for the allocator size. As a workaround you can
use calculation view unfolding, e.g. via
CALC_VIEW_UNFOLDING hint (SAP Note
2142945).

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. Additionally you can
check for the following specific constellations:
If you observe a growth of this allocator in
combination with calculation engine processing
(e.g. TREXviaDBSL, call stack modules like
TrexCalculationEngine::Optimizer:
:optimizeHierarchyJoinOverMultipr
ovider and
TrexCalculationEngine::CombineNon
RootAggrOverMpRule::applyAggrOver
HierachyJoin), you face a SAP HANA bug that
is fixed with SAP HANA Rev. 1.00.97.02 and
1.00.102. With SAP HANA <= 1.0 SPS 08 a
large size of this allocator can be caused by
the creation of join statistics. These statistics
are dynamically created during the first
execution of a specific join after a restart of
SAP HANA. If the same kind of join is

Pool/malloc/libhdbcsapi.so

Column store
API (search)
and
intermediate
results

30 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

concurrently started in many different
transactions, the efforts and memory
requirements are also multiplied, because
each transaction calculates the join statistics
individually. As a workaround you can execute
a critical join individually before running it with
a higher parallelism. As of SAP HANA 1.0 SPS
09 the join statistics creation is improved and
the problem no longer happens. This allocator
can also grow when tables with large delta
storages are accessed. Call stacks like
TRexAPI::DeltaIndexManager::docId
Search are indicators for this scenario. In this
case you have to make sure that a reasonable
merge strategy is implemented (SAP Note
2057046). Up to SAP HANA 1.0 SPS 12 this
allocator is also used when the query result
cache is configured (indexserver.ini -> [cache]
-> query_result_cache = enabled; SAP Note
2014148). With newer patch levels dedicated
result cache allocators are used instead. Large
allocations can also be linked to queries with
expensive fuzzy / text searches (call stack
modules like ltt_adp::vector,
TRexAPI::FreeStyleExecutor::addTo
ken, TRexAPI::FreeStyleExecutor::creat
eAllAlternatives,
TRexAPI::FreeStyleExecutor::build
FSQuery). Large allocations from module
OlapEngine::BwPopSearch::setQuery
EntryInList in context of BW multiproviders (or
composite providers) and FEMS can be
caused by missing filter pushdown or problems
with a convex hull optimization (SAP HANA >=
1.00.122.10). See SAP Note 2517443 and also
consider to set indexserver.ini -> [calc_engine]
-> optimize_convex_hull_through_mp = 0 for
testing purposes. With SAP HANA <=
1.00.122.15, <= 2.00.012.04 and <= 2.00.024
a memory leak in context of guided navigation
searches (e.g. Enterprise Search) can result in
a growing allocator size (SAP Note 2601475).

If you see particularly high values for this
allocator, check the following typical reasons:
Large indexes being created on a partitioned
column store table can consume significant
amounts of memory in these allocators. Check
if you can avoid creating indexes on
particularly large, partitioned column store
tables. If the problem happens during a DMO
activity, see SAP Notes 2257362 and 2578336
and make sure that critical indexes are created

Pool/malloc/libhdbcs.so
Column store
components

31 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

before the table data is loaded. Starting with
SAP HANA 1.00.122.11 and 2.00.012.01 the
memory footprint of index creations is
optimized. Pool/malloc/libhdbcs.so may also
grow during merges of large tables (see SAP
Note 2057046) COUNT DISTINCT operations
on large tables and columns with many distinct
values can also be responsible for a growth of
this allocator.

Pool/malloc/libhdbcsmd.so
Transient
metadata

This allocator contains transient metadata like
the last delta merge time or the number of
values in main and delta storage. Additionally it
is used by different SAP HANA engines for
specific reasons. In order to understand the
origination of the space consumption, you can
run the hdbcons blocklist option (hdbcons 'mm
bl -t Pool/malloc/libhdbcsmd.so').

Pool/malloc/libhdbcsstore.so
Column store
persistence
objects

This allocator contains administrative column
store information (like parts of the row lock
information and transaction handling) and may
grow in case of many locks or blocked garbage
collection. If much memory is allocated by
ptime::LinkHash / TrexStore::LockMapEntry*, it
can be caused by an infrequent row lock link
hashmap garbage collection. As a workaround
you can trigger this garbage collection by
unloading and reloading tables with a high
INSERT / DELETE load. The problem is fixed
with SAP HANA Revisions 102.04 and 111.

Pool/malloc/libhdbcstypes.so

Column store
data types,
hybrid LOB
information

This allocator contains information about
column store data types including hybrid LOB
information like memory LOB values or disk
LOB references. As of SAP HANA SPS 10 it is
common to see sizes between 10 and 50 GB
for larger databases, depending on the amount
of hybrid LOB values existing in the system.
This allocated can be treated similarly like the
Pool/ColumnStoreTables allocators described
above: Its size is closely linked to the column
store table sizes (with a focus on hybrid LOB
columns), and so it can mainly be reduced by
reducing data stored in hybrid LOB columns.
See SAP Note 2220627 for more information
related to SAP HANA LOBs.

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. The following scenarios
can lead to an increased memory footprint of
Pool/malloc/libhdbcswrapper: SAP HANA <=

Pool/malloc/libhdbcswrapper.so
(Intermediate)
results

32 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

1.00.122.16: Memory leak in context of mixed
inverted index joins (SAP Note 2624305)

Pool/malloc/libhdbevaluator.so
Intermediate
results

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. Database requests
responsible for a growth of this allocator
typically show evaluator specific modules like
Evaluator::ThreeCode::run in their call stacks.

Pool/malloc/libhdbitab.so
Intermediate
results

See Pool/itab for more information. In general
Pool/malloc/libhdbitab.so should be small. If it
is large and growing, a memory leak can be
responsible with Rev. <= 97.02 and Rev. 100
to 102.00.

Pool/malloc/libhdbmetadataobject.
so

Metadata

This allocator is linked to the SAP HANA
metadata cache. A large and rising size can be
a consequence of a bug that is fixed with SAP
HANA >= 1.00.122.13. As a workaround
clearing the SQL cache with "ALTER SYSTEM
CLEAR SQL PLAN CACHE" can help to
release no longer required entries and reduce
the allocator size.

Pool/malloc/libhdbolap.so
Intermediate
OLAP engine
results

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. SAP Note 2373932
describes a memory leak in this allocator that
is fixed with SAP HANA Rev. 112.07 and 120.

Pool/malloc/libhdbpartitioning.so

Intermediate
results in
context of
partitioned
tables

This generic allocator can grow in case of
accesses to partitioned tables. If you
experience temporary or permanent large
sizes, open a SAP incident for further analysis.

Pool/malloc/libhdbpythonbase.so
Python
initialization and
execution

This allocator is related to a wrapper used for
initializing and executing Python functions. If it
is too large it may be due to the pythontrace
was enabled for too long. See KBA 2519536 -
Nameserver ran out of memory with
Pool/malloc/libhdbpythonbase.so as top
allocator

This allocator contains all dynamic row store
memory allocations which aren't assigned to
more specific allocators. With newer revisions
the utilization of this allocator should reduce.
You can use the options "mm bl" of hdbcons
and additionally create an allocator stack
strace if required (SAP Note 2222218) to
determine the top consumers inside the

Pool/malloc/libhdbrskernel.so
Row store
components

33 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

allocator. The following individual reasons for
an increased size exist: Top consumer SAP
Note Details ptime::Proc_insert_parallel::exec
ute If most space is allocated by
ptime::Proc_insert_parallel::exec
ute, it can be caused by a memory leak bug
which is fixed with SPS 08.
ptime::RowInsertReproducibleJobNo
de::preprocess 2253121 With SAP HANA
Revisions between 90 and 102.02 this
allocator can grow due to a bug that can be
bypassed by setting the following parameter as
a workaround: indexserver.ini -> [row_engine] -
> dynamic_parallel_insert_max_worke
rs = '1' ptime::codegen_qp2so::gen_code
2275252 With SAP HANA Revisions 100 to
102.01 and call stacks containing
ptime::codegen_qp2so::gen_code you can
suffer from the bug described in SAP Note
2275252. ltt::string_base<char,
ltt::char_traits<char> >::enlarge_
ptime::traceThreadLockInfo
ptime::ServiceThreadSamplerThread
::run 2114710 If thread sample details are
collected and very large SQL statements are
running, the allocator can grow significantly,
because every second a new copies are
created and stored in
Pool/malloc/libhdbrskernel.so. In order to
reduce the allocation, you should search for
extremely large SQL statements and avoid or
reduce them as much as possible. As a
temporary workaround you can also disable
the collection of thread sample details:
global.ini -> [resource_tracking] ->
service_thread_sampling_monitor_t
hread_detail_enabled = false Be aware that
this change impacts the supportability of the
system and so it shouldn't be implemented on
a permanent basis. This problem is fixed with
Rev. 1.00.122.06 and 2.00.001, then only the
first 256 characters will be collected. See also
SAP Note 2000002 ("Are there known issues
with particularly large SQL statement texts?")
and consider a reduction of the maximum
statement length limit. If you experience a
large and rising size that can't be explained,
open a SAP incident for clarification.

This allocator is related to the consistency
check procedure
CHECK_TABLE_CONSISTENCY (see SAP
Note 1977584). You can limit the number of

Pool/malloc/libhdbtableconsistenc
ycheck.so

Table
consistency
check

34 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

concurrent executions on different tables or run
it at times with less concurrent workload in
order to reduce the risk of critical memory
allocations.

Pool/malloc/libsapcrypto.so
Encryption
related data
structures

This allocator can grow with SAP HANA
2.00.020 to 2.00.021 due to a memory leak
related to hash functions (e.g.
HASH_SHA256). You need to restart SAP
HANA in order to reclaim the allocated
memory. A fix is available with SAP HANA
2.00.022.

Pool/mds

(intermediate)
result sets of
InA / MDS
queries

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that database requests are executed as
memory-efficient as possible. The memory is
only allocated while an InA / MDS query is
executed. You can reduce the memory
footprint by reducing the amount of processed
and returned data. See SAP Note 2670064 for
more information related to MDS.

Pool/mdx
MDX query
allocations

As of SAP HANA SPS 09 several reasons for a
high memory allocation of Pool/mdx are fixed.

Pool/Metadata/MetadataCache/Metad
ataGlobalCacheSlot

Metadata cache

The metadata cache allocator was introduced
with SAP HANA SPS 12 and is used to store
metadata locally that otherwise has to be
retrieved from a remote SAP HANA node. It
can grow significantly if many DDL operations
are executed, because DDL operations
invalidate existing cache entries. Reasons for
increased sizes are: Blocked garbage
collection (SAP Note 2169283) A problem
exists in SAP HANA Rev. 120 to 122.03 that
can result in increased metadata cache sizes.
This problem is fixed with Rev. 122.04 (re-use
of previous cache entries if possible). Before
SAP HANA SPS 12 the metadata information
was stored in temporary row tables and so the
allocator Pool/RowEngine/RSTempPage was
used. As a workaround in case of large
metadata cache sizes you can clear the it
manually: ALTER SYSTEM CLEAR
METADATA CACHE This command will clear
the cache on the SAP HANA node where you
are currently logged on. Starting with SAP
HANA 1.00.122.13 this command will clear the
metadata cache on all SAP HANA nodes and
you can add "AT '<host>:<port>'" if you want to
clear only the cache for one specific host and
service.

Pool/Metadata/SessionLocalItabCon Temporary This heap allocator exists with SAP HANA

35 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

tainer table
information

SPS 12 and higher and is used to store the
following information: Session local data and
session local metadata of session local
temporary tables Session local data of global
temporary tables If you face a high size of this
allocator you can check
M_TEMPORARY_TABLES at first (e.g. using
SQL: "HANA_Tables_Temporary_Tables"
available via SAP Note 1969700). Reasons for
increased sizes are: Unnecessary high amount
of temporary tables On Rev. 1.00.120 to
1.00.122.05 and 2.00.000 the session local
metadata consumes larger amounts of
memory than required. This is fixed with Rev.
1.00.122.06 and 2.00.001. See SAP Note
2418950 for more details.

Pool/NetworkChannelCompletionHand
ler

Network
channel
completion
interface

This allocator holds network channel related
information. A high number of channels can
increase the size of this allocator. The
following options exist to optimize the allocator
size: See SAP Notes 2222200 and 2382421
and make sure that a proper SAP HANA
network configuration is in place. Avoid an
unnecessary high amount of partitions that can
increase the number of required network
channels (SAP Note 2044468).

Pool/OptimizeCompression/<schema>
:<table>
Pool/OptimizeCompression/<schema>
:_SYS_SPLIT_<table>~<partition>

Compression
optimization

Allocators starting with
Pool/OptimizeCompression are used during
compression optimizations of tables. See SAP
Note 2112604 and make sure that
compressions area configured in a reasonable
way.

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. If a high memory
consumption is caused by the F4 value help
mode D in BW environments (7.30 - 7.40),
implement the BW correction available via SAP
Note 2097025. Consider setting the hint
NO_USE_OLAP_PLAN (SAP Note 2142945)
for testing purposes in order to check if a
switch from OLAP engine to join engine works
and results in a reduced memory consumption.
If the issue appears with a BW query, check if
the problem improves using a different BW
query execution mode. See BW on HANA and
the Query Execution Mode for more
information related to BW query execution
modes. If the issues is linked to SAP ABAP
queries using fast data access (FDA), you can

Pool/parallel Pool/parallel/aggregates
Pool/parallel/align
Pool/parallel/compactcol Pool/parallel/ihm
Pool/parallel/pop
Pool/parallel/temp_aggregates
Pool/parallel/temp_dimensions
Pool/parallel/temp_other

OLAP
aggregation
results

36 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

consider deactivating it as described in SAP
Note 2399993. If you face a high memory
consumption related to DTP activities in BW,
you can check SAP Note 2230080 for possible
optimizations.

Pool/PersistenceManager/Backup

Sorted list of
page numbers
for data
backups

This allocator is populated at the beginning of
a data backup in order to have a sorted list of
page numbers for backup streaming. Once the
data backup is finished, the space is released.
The size of the allocator can be particularly
large in case of large databases and / or a high
amount of disk LOBs (SAP Note 2220627).

Pool/PersistenceManager/Container
FileIDMapping

LOB container
mapping

This allocator maps LOB containers to the
persistence files. If it is particularly large, the
following reasons are possible: A large amount
of LOB data (can e.g. be checked via SQL:
"HANA_Tables_LargestTables" -> LOB_GB in
SAP Note 1969700) Unnecessarily high
amount of LOB containers, improved with
Revision 94

Pool/PersistenceManager/DisasterR
ecoveryPrimary

Asynchronous
system
replication
buffer

The main contributor to the allocator is usually
the asynchronous system replication buffer, so
it only has a significant size of asynchronous
system replication is used and it closely
depends on the value of the related parameter:
<service>.ini -> [system_replication] ->
logshipping_async_buffer_size =
<size_in_byte> If you have to increase this
buffer, you should only do it for the services
with a high redo log generation, typically the
indexserver (<service>.ini = indexserver.ini).
Setting this parameter in global.ini technically
also works, but as a consequence the
increased space is allocated multiple times (for
all different services), and so memory is
wasted. See SAP Note 1999880 for more
information related to SAP HANA system
replication.

Pool/PersistenceManager/DisasterR
ecoverySecondary

System
replication
related
allocations on
secondary site

The size of this cache is mainly linked to the
setting of the following system replication
parameter on secondary system replication
site (SAP Note 1999880): global.ini ->
[system_replication] ->
logshipping_replay_push_persisten
t_segment_count The default value of 20
relates to a size of 1 GB. See SAP Note
2409671 for more information related to this
setting.

This cache is used in system replication
environments (SAP Note 1999880) with a log
replay related operation mode like logreplay or

Pool/PersistenceManager/DisasterR
ecoverySecondary/ReplayLogCache

System
replication log
replay cache

37 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

logreplay_readaccess. It improves log replay
performance by avoiding disk I/O. Per default 4
GB are used for the indexserver and 1 GB for
other services. Normally no change to the
default is required. In special situations (e.g. as
workaround in SAP Note 2405763) the size
can be adjusted with the following parameter:
<service>.ini -> [system_replication] ->
logshipping_replay_logbuffer_cach
e_size = <size_in_byte>

Pool/PersistenceManager/LOBContai
nerDirectory

Hybrid LOB
directory

This allocator contains information about
hybrid LOB values stored on disk (see SAP
Note 2220627). Its size depends mainly on the
amount of hybrid LOB values stored on disk. It
can grow in case of problems with LOB
garbage collection. See SAP Note 2169283 for
more information related to garbage collection.

Pool/PersistenceManager/LogRecove
ry

Log recovery

This allocator is used to buffer up to four log
segments in memory during recovery. The
configured log segment sizes can be checked
with SQL: "HANA_Logs_LogBuffers" (SAP
Note 1969700). In case of a 1 GB log segment
size you have to expect a memory allocation of
4 GB during recovery.

Pool/PersistenceManager/Persisten
tSpace/DefaultLPA/LOBPage

Disk LOB
caching

While disk LOB pages (SAP Note 2220627)
are cached in the generic allocator
Pool/PersistenceManager/Persisten
tSpace/DefaultLPA/Page with SAP HANA <=
2.0 SPS 02, they use the dedicated LOB
allocator Pool/PersistenceManager/Persisten
tSpace/DefaultLPA/LOBPage with SAP HANA
>= 2.0 SPS 03. Populating and releasing this
allocator follows the same rules like described
for Pool/PersistenceManager/Persisten
tSpace/DefaultLPA/Page. Starting with SAP
HANA 2.0 SPS 04 you can configure the
allocator size limit that will trigger a cleanup,
preventing further growth: <service>.ini ->
[persistence] ->
lob_page_trigger_cleanup_threshol
d = <size_in_byte>

The SAP HANA page cache stores blocks
retrieved from disk similar to a file system
cache. This can e.g. speed up the access to
hybrid LOBs (SAP Note 1994962). You can
check for the content of the allocator in terms
of page types by executing "pageaccess a"
with hdbcons (SAP Note 2222218). Due to a
bug the size of this cache can be unnecessary
large with Revisions 110 to 122.05. In order to
avoid automatic reclaims with impact on the

Pool/PersistenceManager/Persisten
tSpace(0)/DefaultLPA/Page
Pool/PersistenceManager/Persisten
tSpace/DefaultLPA/Page

SAP HANA
page cache

38 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

running system you can consider the following
proactive measures (see SAP Note 2301382):
Rev. 110 - 122.01: regular "resman shrink"
scheduling Rev. 122.02 - 122.05:
unload_upper_bound configuration The page
allocator size can be significant after a
recovery, e.g. during a near zero downtime
upgrade using SAP HANA system replication
or a takeover (SAP Note 1999880). See SAP
Note 2427897 for more details. With SAP
HANA 1.0 SPS 12 >= 1.00.122.06 it is
recommended to disable caching for main
(global.ini -> [persistence] ->
internal_caching_for_main = false, SAP Note
2600030) in order to reduce the utilization of
the page cache. The pages cache also buffers
history files and so garbage collection issues
resulting in a higher amount of history files can
implicitly result in an allocator growth. Related
allocator stack modules can be e.g.
DataAccess::GarbageCollectorJob::
run. See SAP Note 2169283 for more
information related to SAP HANA garbage
collection. Delta merges (SAP Note 2057046)
temporarily write the data of the new main
storage into the page allocator, so during delta
merges of large tables the allocator size can
significantly grow. The allocated space will be
freed when the delta merge is finished. You
can consider partitioning large tables (SAP
Note 2044468) in order to reduce the
temporary space overhead. If LOB garbage
collection doesn't take place properly (SAP
Note 2169283), LOB related pages aren't
purged in time and so there can be an
increased growth and size of the page
allocator. If the above scenarios don't apply
and you see unloads or OOMs at a time where
this allocator is still large, it is likely that the
disk I/O peformance is not able to keep up with
the data changes. In this case you should
check your I/O stack for bottlenecks. See SAP
Note 1999930 for more information. The page
cache also contains the paged attributes cache
(SAP Note 1871386). If you use paged
attributes, you should check the following
details: Check the size parameters described
in SAP Note 2111649 and consider that the
configured size contributes to the page cache
size. Due to the bug described in SAP Note
2497016 it can happen that inverted index
related pages are pinned in memory and more
space is used for the paged attributes cache

39 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

than intended (SAP HANA <= 1.00.122.09, <=
2.00.002.00, <= 2.00.011).

Pool/PersistenceManager/Persisten
tSpace(0)/DefaultLPA/ShadowPage
Pool/PersistenceManager/Persisten
tSpace/DefaultLPA/ShadowPage

I/O flush
shadow pages

In some scenarios a copy of a page has to be
created before the flush thread can write it
down to disk: Critical savepoint phase
Encrypted page Row store page The page is
deallocated as soon as the I/O write was
successfully finished and acknowledged. A
large size of this allocator can indicate a high
I/O write volume or that the I/O stack isn't able
to keep up with the flush thread activities. See
SAP Note 1999930 for more information
regarding I/O analysis.

Pool/PersistenceManager/Persisten
tSpace(0)/PageChunk
Pool/PersistenceManager/Persisten
tSpace/PageChunk

Clustering of
small pages for
write

This allocator is used to combine several
smaller pages in chunks before writing them to
disk. Once the write has finished, the allocated
space is released. A temporary large allocator
size is usually a consequence of disk I/O
bottlenecks. See SAP Note 1999930 and
eliminate bottlenecks in the I/O stack.

Pool/PersistenceManager/Persisten
tSpace(0)/RowStoreLPA
Pool/PersistenceManager/Persisten
tSpace/RowStoreLPA

Row store
control blocks

This allocator contains row store control blocks
and can grow significantly in case of a large
row store. See SAP Note 2222277 and make
sure to keep the row store at a reasonable
size, e.g. via cleanup (SAP Note 2388483) or
defragmentation (SAP Note 1813245).

Pool/PersistenceManager/Persisten
tSpace(0)/RowStoreLPA/RowStoreSeg
ment Pool/PersistenceManager/Persisten
tSpace/RowStoreLPA/RowStoreSegmen
t

Row store
cache (system
replication)

This allocator caches row store blocks on the
secondary site of a system replication
scenario, so that the row store can be created
efficiently during failover. Its size is related to
the row store size on the primary system. If the
secondary site runs into OOM because of this
allocator, you have the following options:
Primary system: Move large row store table to
column store Primary system: Reduce data
volume in large row store tables (e.g. via SAP
Note 2388483) Secondary system: Increase
the global allocation limit sufficiently

This allocator is used during SAP HANA
startup to store the row store superblocks
(including row store data) in heap while
populating the row store shared memory. After
startup its size is typically 0, but on secondary
system replication sites it can remain with a
large size for a longer time (with short term
disposition). See SAP Note 2222277 and make
sure to keep the row store at a reasonable
size, e.g. via cleanup (SAP Note 2388483) or
defragmentation (SAP Note 1813245). If the
large size of the allocator causes trouble (e.g.
OOM during startup), you can temporarily

Pool/PersistenceManager/Persisten
tSpace(0)/RowStoreLPA/Superblock
Pool/PersistenceManager/Persisten
tSpace/RowStoreLPA/Superblock

Row store
superblocks

40 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

disable the optimized row store load with the
following parameter (SAP Note 2612205):
indexserver.ini -> [persistence] ->
optimized_rowstore_load = false

Pool/PersistenceManager/Persisten
tSpace(0)/StaticLPA/Page
Pool/PersistenceManager/Persisten
tSpace/StaticLPA/Page

liveCache
pages

This area contains the page cache related to
liveCache (if operated as part of SAP HANA).
Up to SPS 08 these pages aren't swappable.
Starting with SPS 09 the space is reclaimed
automatically by SAP HANA whenever
memory is required, so a large size is not
critical. See SAP Note 2593571 for more
information related to liveCache.

Pool/PersistenceManager/Persisten
tSpace/TempLPA/Page

Temporary
table data

This heap allocator stores data of temporary
tables. It can significantly grow during
repartitioning activities (SAP Note 2044468).

Pool/PersistenceManager/UndoDirec
tory

Undo and
cleanup file
directory

This allocator contains undo and cleanup file
information and can grow significantly if
persistence garbage collection is blocked. See
SAP Note 2169283 for more information
related to garbage collection and take
appropriate actions to resolve garbage
collection issues.

Pool/PersistenceManager/UnifiedTa
ble container
Pool/PersistenceManager/UnifiedTa
bleContainer

L2 delta and
paged attribute
information

This allocator contains persistence information
related to the new delta mechanism used as of
SPS 09 (L2 delta) and paged attributes (SAP
Note 1871386). Up to SPS 08 delta logs were
stored in virtual files instead. The actual delta
area in column store remains untouched from
this allocator. See SAP Note 2057046 and
make sure that delta merges are properly
configured and executed, so that the delta
storage size of the tables remains on
acceptable levels. The allocator can grow in
cases when persistence garbage collection is
blocked (SAP Note 2169283).

Pool/PersistenceManager/VirtualFi
le entry TID map

Transient
mapping for
VirtualFile
overwrite
optimization

This allocator typically grows in the context of
disk LOBs (SAP Note 2220627): With SAP
HANA SPS <= 08 it can consume significant
amounts of space if a lot of small disk LOBs
are inserted It can also grow temporarily if
tables with many disk LOBs are converted
(e.g. for adusting the LOB MEMORY
THRESHOLD limit).

Pool/PlanningEngine/Compile
Planning engine
compilation
structures

If the allocator size is large in context of
planning engine activities, you can check if
dropping no longer required planning sessions
can help to reduce the allocations (SAP Note
2169283 -> "How can garbage collection be
triggered manually?" -> "Planning engine
garbage collection").

41 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Pool/PlanningEngine/Fox
Dictionaries for
FOX formula
executions

FOX formula executions by the planning
engine may require temporary helper
structures that are allocated in
Pool/PlanningEngine/Fox. They are dropped
after the FOX planning function is finished. If a
significant memory allocation - often in
combination with Pool/itab - is seen, there may
be a loop in the FOX script that has to be
corrected. Additionally you can check if
dropping no longer required planning sessions
can help to reduce the allocations (SAP Note
2169283 -> "How can garbage collection be
triggered manually?" -> "Planning engine
garbage collection").

Pool/PlanningEngine/LookupDict

Master data
lookup
dictionary of
planning engine

You can use SQL:
"HANA_Heap_PlanningEngine"
(OBJECT_TYPE = 'LOOKUP DICTIONARY')
available via SAP Note 1969700 in order to
check for the main contributors and the
creation times. After a restart of SAP HANA
this allocator is empty and re-populated on
demand. You can use SQL:
"HANA_Heap_PlanningEngine_Cleanup
" (SAP Note 1969700) in order to drop no
longer required runtime objects. Starting with
SPS 10 SAP HANA automatically takes care
for the cleanup. If these steps don't help you
can check if dropping no longer required
planning sessions can help to reduce the
allocations (SAP Note 2169283 -> "How can
garbage collection be triggered manually?" ->
"Planning engine garbage collection").

Pool/planviz/column store/plans
Pool/planviz/column
store/plans/ParentCycleDetector
Pool/planviz/column store/PlanVizContext
Pool/planviz/column
store/PlanVizContext/JsonAllocato
r Pool/planviz/common/final results
Pool/planviz/common/strings
Pool/planviz/sql layer/PlanVizContext
Pool/planviz/sql
layer/PlanVizContext/PlanVizParam
s

PlanViz details

These allocators are used by PlanViz and the
plan trace (see SAP Note 2119087). In order to
keep their sizes at a reasonable level you
should use the plan trace only as restricted as
possible (in terms of time and traced
statements). SAP Note Impacted Revisions
Details 2405237 <= 112.06 120 - 122.02 Due
to a bug with SAP HANA SPS 10 to SPS 12 it
can happen that these allocators continue to
grow even after you have disabled the trace. In
this case you have to restart in order to clear
the allocators and avoid further growth. <=
122.06 A similar bug (continous growth of
allocators after tracing) still exists up to Rev.
122.06. It is fixed with Rev. 122.07. Even with
higher SAP HANA Revisions these allocators
can grow although the plan trace was
deactivated, so in production systems you
should make sure that plan trace isn't used.

Processing of See question "Which general optimizations Pool/QueryMediator

42 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

complex filters exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. Related queries typically
have query mediator related modules in their
call stacks, e.g.:
QueryMediator::FilterProcessor::a
ddFilterAsExpression
QueryMediator::FilterTranslation:
:SearchOperation Starting with SAP HANA
SPS 10 an optimization is implemented so that
the problem is fixed in many cases. As a
workaround you can check if specifying the
hint NO_CS_ITAB_IN_SUBQUERY helps to
reduce the memory consumption. See SAP
Note 2142945 for more information related to
SAP HANA hints.

Pool/ResourceContainer
Pool/ResourceContainer/ResourceHe
ader

Metadata for
memory objects

A large size of these allocators is typically
caused by a high number of memory objects.
You can use SQL:
"HANA_Memory_MemoryObjects" (SAP Note
1969700) or directly query
M_MEMORY_OBJECTS in order to check for
the number of existing memory objects.
Pool/ResourceContainer/ResourceHe
ader contains resource headers that are never
destroyed, so it will not reduce in size over
time until SAP HANA is restarted.

Pool/ResultCache(for cached view)
Static result
cache
information

This allocator stores static result cache
information information with SAP HANA SPS
12 and higher. The static result cache is
available as of SAP HANA SPS 11. See SAP
Note 2336344 for more information related to
the SAP HANA static result cache cache.

Pool/RowEngine/Communication

TCP/IP
communication
channel
management

See SAP Note 2222200 and try to reduce the
amount of connections and inter-node / inter-
service communications in order to reduce the
size of this allocator.

Check via SQL:
"HANA_RowStore_TotalIndexSize" (SAP Note
1969700) if the size of the heap allocator is in
line with the size of the row store indexes. If it
is significantly larger, most likely a memory
leak exists that can only be cleaned up by
restarting SAP HANA. Upgrade to at least
revision 83 in order to eliminate known
memory leaks. Due to a bug with Rev. <=
85.03 and Rev. 90 to 94 index garbage
collection is not necessarily triggered in time
and so this allocator can unnecessarily grow.
With Rev. 85.04 and Rev. 95 a fix is delivered.

Pool/RowEngine/CpbTree
Pool/RowStoreTables/CpbTree

Row store
indexes

43 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

See SAP Note 2169283 for more information
related to garbage collection. If the allocator
size is in line with the index sizes, check if
there are large tables with indexes in row store
that can be cleaned (e.g. via SAP Note
2388483) or moved to column store. Check via
SQL: "HANA_Indexes_Overview" (ORDER_BY
= 'SIZE', SAP Note 1969700) if there are large
indexes created on row store tables that are
not required and can be dropped.

Pool/RowEngine/GlobalHeap

Global,
unspecific row
engine data
areas

This allocator is an unspecific allocator for row
engine memory. As all significant memory
allocation should be assigned to dedicated
allocators, Pool/RowEngine/GlobalHeap
shouldn't allocate too much memory. Reasons
for increased sizes are: SAP Note Impacted
Revisions Details < 90 Processing of a very
high number of rows with STRING_AGG
function can result in an increased allocator
size. 2371445 <= 122.02 A memory leak can
be responsible for a rising allocator size. If you
face another situation with a significant
memory allocation in
Pool/RowEngine/GlobalHeap, you can open a
SAP incident for clarification.

Pool/RowEngine/IndexRebuild
Row store index
rebuild
structures

This heap allocator is used when row store
indexes are rebuilt, typically during / after SAP
HANA restarts (SAP Note 2177064).

Pool/RowEngine/LOB

LOB data
processed by
database
requests

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. This allocator stores small
LOB values (default: <= 1024 byte) that are
processed by database requests. Larger LOB
values are stored in
Pool/RowEngine/QueryExecution. If the
Pool/RowEngine/LOB allocator is large, you
should check for SQL statements requesting a
large amount of records with LOB columns.

Pool/RowEngine/LockTable
Pool/RowStoreTables/LockTable

Row store lock
and version
information

A large size of this allocator can indicate a high
number of transactional locks (SAP Note
1999998) or garbage collection issues (SAP
Note 2169283). Additionally you can check the
following known SAP HANA bugs resulting in
increased sizes of this allocator: SAP Note
Impacted Revisions Details 2391552 110 -
122.04 Missing cleanup of
Pool/RowStoreTables/LockTable during
garbage collection

Monitoring view This heap allocator contains information of in-Pool/RowEngine/MonitorView

44 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

information memory monitoring views (M_* views). You
can display the largest areas within
Pool/RowEngine/MonitorView using "mm bl"
with hdbcons (SAP Note 2222218) as
described further below. In general you have to
make sure that less data is collected in the
critical monitoring views (e.g. by reducing the
trace level). Known issues are: Monitor views
Impacted revisions SAP Note Details
M_CS_ALL_COLUMNS M_CS_COLUMNS
M_CS_TABLES
M_FUZZY_SEARCH_INDEXES M_TABLES
>= 102.00 >= 110 120 - 121 2343177
Accesses to these monitoring views can result
in memory leaks if certain conditions like scale-
out and a high number of records are fulfilled.
M_CS_LOADS M_CS_UNLOADS 120 - 121
2340582 The load and unload trace can be
responsible for a memory leak.
M_EXPENSIVE_STATEMENTS 70 - 85.00
2112732 If most space is allocated by
"ptime::ExpensiveStatementMonitor
::create_objects_ringBuffer" at
ExpensiveStatementsMonitor.cc the problem is
caused by the expensive statement trace. You
can reduce the allocation by increasing the
trace limit or deactivating the expensive
statements trace (SAP Note 2180165). In SPS
07 and SPS 08 a memory leak exists which
can be eliminated by deactivating in-memory
tracing using the following parameter: global.ini
-> [expensive_statement] ->
use_in_memory_tracing = false
M_SQL_PLAN_CACHE_FOR_STATISTICSSE
RVER_RESET_ < 100 2186299 The SQL
cache history collection of the embedded
statistics server can result in a high memory
demand. M_TABLE_LOB_FILES Queries on
can consume significant amount of this
memory in ptime::TableLobFilesMonitor::crea
teLobEntry if many hybrid LOBs exist. Starting
with SAP HANA SPS 12 you can consider
using M_TABLE_LOB_STATISTICS as a light-
weight variant for M_TABLE_LOB_FILES that
doesn't show the high memory requirements.

This allocator is required during parsing of
database queries. Large sizes can be caused
by complex SQL statements. Additionally you
can check the following known SAP HANA
issues resulting in increased sizes of this
allocator: SAP Note Details 2124112 For
parsing particularly large SQL statements it

Pool/RowEngine/QueryCompilation
Compilation
memory

45 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

can be required to increase the value of this
parameter: indexserver.ini -> [sql] ->
default_segment_size =
<segment_size_in_byte> As a consequence
the size of the
Pool/RowEngine/QueryCompilation parameter
can increase. 2453348 The size of this
allocator can grow in the context of an
activated plan trace. A memory leak in context
of call stack module
AnalyticalAuthorization::FilterPr
ovider::getFilterAsQoStructure is a
consequence of a SAP HANA bug fixed with
Rev. 1.00.122.09. A growth of this allocator
was observed in the context of terminations
that show up in the database trace (SAP Note
2380176) in the following way: Error during
Plan execution of model... This behavior can
be considered as a memory leak bug. You can
analyze and reduce the terminations as a
workaround until a fix is available. 2124112
Reducing the complexity of parsing and
estimations ("Which problems and solutions
exist in the area of parsing?" -> "High sampling
overhead") can have a positive impact on the
size of Pool/RowEngine/QueryCompilation.

Pool/RowEngine/QueryExecution
Pool/RowEngine/QueryExecution/Sea
rchAlloc

Row engine
results

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. Additionally you can
check the following known SAP HANA bugs
resulting in increased sizes of this allocator:
SAP Note Impacted Revisions Details 2000792
67 - 69.00 70 ORDER BY with parallelized sub
plan 2271235 102.01 - 102.04 110 Batch
INSERTs on row store table 2527251
1.00.112.07 1.00.122.06 - 1.00.122.08
2.00.000 Calculation view with analytic
privilege check

This heap allocator is used for row store
MVCC management during recovery
operations (e.g. on secondary system
replication sites and during database
recoveries). It is available starting with SAP
HANA 2.0 and it can increase in case of
garbage collection issues (SAP Note
2169283). The following SAP HANA bugs exist
that can result in an increased allocator size:
SAP Note Impacted Revisions Details 2573738
2.00.021 - 2.00.022 Missing row store garbage
collection on secondary system replication site

Pool/RowEngine/RowTableManager/MV
CCManager/MVCCAllocator

Row store
MVCC
management
during recovery

46 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

(SAP Note 1999880) with operation mode
logreplay

Pool/RowEngine/RSTempPage
Temporary row
store tables

This allocator holds data related to temporary
tables and NO LOGGING in row store. Check
why many or large temporary row store tables
exist and try to reduce it. Make sure that
sessions are closed whenever possible,
because this will drop related temporary tables.
See SAP Note 2000003 ("What kind of
temporary and non-persisted tables can be
created with SAP HANA?") for more
information related to temporary and NO
LOGGING tables. Additionally you can check
the following known SAP HANA bugs resulting
in increased sizes of this allocator: SAP Note
Impacted Revisions Details 2368929 <=
112.06 Memory leak if temporary row tables
without variable length columns are used
2402318 120 - 122.02 Memory leak when
temporary row tables are dropped

Pool/RowEngine/Session
Session
management

Check if there is an unusual high number of
open connections and eliminate the root
cause.

Pool/RowEngine/SQLPlan SQL cache

The SQL cache can be configured
unnecessarily large because underlying issues
like a lack of bind variables or varying IN LIST
sizes are not recognized. See SAP Note
2124112 and make sure that the SQL cache is
not configured larger than required. Be aware
that the heap allocator size can be up to three
times larger than the size (in byte) configured
with the following SAP HANA parameter:
<service>.ini -> [sql] -> plan_cache_size
Reason: In addition to the SQL plan cache
itself, this allocator includes all other
miscellaneous memory allocations such as
data structures for managing SQL plan cache,
monitoring view data and optimizer allocations
(SAP Note 2502256). Due to a SAP HANA bug
on SAP HANA <= 1.00.122.13, <= 2.00.012.03
and <= 2.00.022 certain internal SQL cache
statistics weren't considered for the plan cache
size calculation and so the heap allocator
could grow more than expected.

Pool/RowEngine/TableRuntimeData
Table runtime
data

With SAP HANA Rev. <= 97.01 no proper
cleanup happens when a temporary table is
dropped, this bug is fixed as of Rev. 97.02.

A high number of versions may need to be
preserved for read consistency (MVCC)
reasons in case of a long running transaction.
This increases the size of this allocator. See

Pool/RowEngine/Version
Pool/RowStoreTables/Version

Row store
version space

47 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

"Which options exist to reduce the risk of SAP
HANA memory issues?" -> "Transactional
problems" in this SAP Note for more detailed
recommendations.

Pool/RowEngine/ViewCache
Static result
cache
information

This allocator stores static result cache
information with SAP HANA SPS 11. The static
result cache is available as of SAP HANA SPS
11. See SAP Note 2336344 for more
information related to the SAP HANA static
result cache.

Pool/RowTableUpdateAllocator
Row table
update
information

This allocator is used in context of updating
row store tables. Due to a SAP HANA bug it
can happen that memory isn't released in time.
As a workaround you can clear the SQL cache:
ALTER SYSTEM CLEAR SQL PLAN CACHE
The bug is fixed with SAP HANA >= 122.10,
2.00.002.01 and 2.00.010.

Pool/SearchAPI Pool/SearchAPI/Itab
Search

Intermediate
results

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. This allocator is more
intensively used with SAP HANA Rev. 122.05.
It works in a similar way like Pool/itab, so you
can check that allocator for more information.
Among others it is used by the hierarchy
cache, see allocator Pool/hierarchyBlob for
more details.

Pool/Search/PreparedQuery
Prepared
searches

This allocator is used for searches related to
prepared statements.

Pool/SerializedObject
Fulltext index
data structures

You can run SQL: "HANA_Indexes_Overview"
(INDEX_TYPE = 'FULLTEXT', ORDER_BY =
'SIZE') available via SAP Note 1969700 to
display the existing fulltext indexes sorted by
size. Check if particularly large fulltext indexes
are really required. For example, a large index
REPOSRC~SRC may exist to support the
ABAP Sourcecode Search (SAP Note
1918229) and can be removed via transaction
SFW5.

Pool/SingleValueCacheBuilder
Single value
cache

This heap allocator is used for the single value
cache (SAP Note 2502256).

Pool/spatialcs Spatial data

This allocator is linked to the Spatials option
(SAP Note 2091935) and it is typically required
for spatial joins, spatial clustering and for
providing metadata for geometry attributes. A
memory leak can be responsible for a
permanent growth on SAP HANA Revisions
between 100 and 122.02. A fix is available with
Revision 122.03.

48 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Pool/SQLScript/Execution
SQL Script
runtime
information

Check for design problems in the used SQL
Script procedures. If you face a high memory
consumption with Rev. 100 or 101, a bug can
be responsible (SAP Note 2312948) in context
of XS engine calls. Upgrade to Rev. 102 or
higher in order to fix it.

You can display the largest areas within
Pool/Statistics using "mm bl" with hdbcons
(SAP Note 2222218). Example 1: (most space
consumed by allocators) 44 GB:
MemoryManager::PoolAllocator::Poo
lAllocator (libhdbbasis.so) 14 GB:
MemoryManager::MemoryCounter::Mem
oryCounter (libhdbbasis.so) 12 GB:
Execution::ContextAllocator::init
ImplicitStatementMemoryBooking
(libhdbbasis.so) 12 GB:
ltt::allocator_statistics::setCom
positeLimit (libhdbbasis.so) Example 2: (most
space consumed by read write locks) 14 GB:
Synchronization::ReadWriteLock::R
eadWriteLock (libhdbbasis.so) 3 GB:
Synchronization::FastReadSlowWrit
eLock::allocateReaderItems (libhdbbasis.so)
The size of the - usually dominant - modules
mentioned in "Example 1" above mainly
depends on the following factors: Number of
records in M_CONTEXT_MEMORY (which is
closely linked to the number of SQL
connections) Number of records in
M_HEAP_MEMORY Number of (logical) CPUs
Activation of special features like memory
tracking or statement memory limit Example:
Constellation Pool/Statistics size Rough
calculation formula 578 CPUs 4.5 million
entries in M_CONTEXT_MEMORY memory
tracking and statement memory limit 300 GB
578 * 4500000 * 96 * 1.3 (statement memory
limit factor) 180 CPUs 3.6 million entries in
M_CONTEXT_MEMORY memory tracking and
statement memory limit 75 GB 180 * 3600000 *
96 * 1.3 (statement memory limit factor) The
factor of 96 byte in the calculation is a worst
case estimation - depending on different
factors it can vary between 64 and 96 byte in
different environments. If there are many
records in M_HEAP_MEMORY (> 100000),
you can check for the most frequent heap
allocators using SQL:
"HANA_Memory_TopConsumers" (AREA =
'HEAP', ORDER_BY = 'NUM') of SAP Note
1969700. The following individual reasons for a

Pool/Statistics
Internal
statistical
information

49 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

high Pool/Statistics allocation exist: The
amount of entries in M_CONTEXT_MEMORY
among others depends on the amount of
database requests cached on client side. In
ABAP environments this is controlled by
parameter dbs/hdb/stmt_cache_size (default:
1000 statements per connection). You can
reduce it in order to minimize the
M_CONTEXT_MEMORY entries and the
Pool/Statistics size (SAP Note 2532199). In a
real-life scenario the size of Pool/Statistics
reduced by factor 4 after having reduced the
value from 1000 to 100. Be aware that a
reduction of this setting can increase the
parsing activities, so you should monitor the
performance effects. See SAP Note 2124112
("Can there be also statement caches on client
side?") for more information related to the
ABAP client statement cache. A very high
number of entries for
Pool/RowEngine/QueryCompilation/S
qlOptAlloc can be caused by a memory leak in
Revisions up to 83. Large allocations for
Synchronization::ReadWriteLock::R
eadWriteLock can be caused by a memory
leak with Rev. 100 to 101 which is fixed as of
Rev. 102. With SAP HANA Rev. <= 97.01 no
proper cleanup happens when a temporary
table is dropped, this bug is fixed as of Rev.
97.02. SAP HANA Revisions 100 - 102.03 and
110 - 112 can suffer from a memory leak in the
context of XS engine calls (SAP Note
2313013) Starting with SAP HANA 1.00.122.13
and 2.00.010 read write locks are tracked in
the dedicated allocator
Pool/FRSWLockAllocator and no longer in
Pool/Statistics. See "Pool/FRSWLockAllocator"
for known issues in context of read write lock
statistics.

Pool/StatisticsServer/ThreadManag
er/Stats::Thread_<num>
Pool/StatisticsServer/JobManager/
Stats::Thread_<num>
Pool/StatisticsServer/JobManager/
WriteLastValuesJob
Pool/StatisticsServer/LastValuesH
older

Standalone
statistics server

These allocators can become quite large if the
standalone statistics server is used and a
significant amount of monitoring data is
available (e.g. large SQL plan cache, many
connections). In order to optimize these
allocators please proceed as described at
"Which options exist to reduce the risk of SAP
HANA memory issues?" -> "Statisticsserver
optimizations" above.

Storage of
(uncompressed)
strings during
column store

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-

Pool/StringContainer

50 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

activities efficient as possible. A temporary increase of
Pool/StringContainer is possible during
processing of large amounts of data, e.g.: Data
load Index creation (improved with SAP HANA
>= 1.00.122.11 and >= 2.00.012.01) Merge
When the utilization reduces again after the
large operation, it is normally not critical.

Pool/ChannelUtils/SynchronousPool
CopyHandler

Multistream
channel copy

This allocator is used in of backup and restore.
The allocated size is linked to the buffer size
and the I/O stream parallelism: Number of
parallel I/O streams (default: 1): global.ini ->
[backup] ->
parallel_data_backup_backint_chan
nels Buffer size (default: 512 MB): global.ini ->
[backup] -> data_backup_buffer_size The
following rules for the allocator size apply (with
#services = number of SAP HANA services
that are backed up): File backup: 2 *
data_backup_buffer_size * #services Backint
backup: (1 +
parallel_data_backup_backint_chan
nels) * data_backup_buffer_size * #services
Attention: Reducing the buffer size can have a
negative impact on backup runtimes.

Pool/TableConsistencyCheck
Table
consistency
check

This allocator is related to the consistency
check procedure
CHECK_TABLE_CONSISTENCY (see SAP
Note 1977584). You can limit the number of
concurrent executions on different tables or run
it at times with less concurrent workload in
order to reduce the risk of critical memory
allocations.

Pool/Text/AEText
Pool/Text/AEText/phrase_index
Pool/Text/AEText/split_document_i
ndex Pool/Text/AEText/split_positional
_index
Pool/Text/AEText/termset_containe
r Pool/Text/AEText/text_property_in
dex

Fulltext index
data structures

These allocators store specific parts of the
data of fulltext indexes, so their size mainly
depends on the size of existing fulltext indexes.
See SAP Note 2160391 for SAP HANA
indexes in general and fulltext indexes in
particular.

Pool/TransientMetadataAlloc
Transient
metadata

This allocator stores temporary metadata
information (object definitions; local on
transaction / session level or global). The life
time of some data is linked to the SQL cache,
so you should check if this cache is defined
larger than required (see SAP Note 2124112).
The following individual reason afor a large
allocator exist: SAP HANA Revisions 100 to
102.04 and 110 to 112.01 can suffer from a
memory leak bug when a procedure is called
(SAP Note 2312994).

51 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Pool/UdivListMgr/UdivListContaine
r

MVCC
management

This allocator is responsible for managing
multi-version concurrency control (MVCC), so
the visibility of rows in different transactions. In
order to check for problems like long-running
transactions you can proceed as described in
"Which options exist to optimize the SAP
HANA memory utilization?" -> "Transactional
problems".

Pool/ValueArray
Pool/ValueArrayColumnDeserialize

Join engine
results

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. These allocators are
closely linked to
Pool/JoinEvaluator/JERequestedAtt
ributes/Results: Pool/ValueArray was a
previous name that is no longer used with
current Revisions.
Pool/ValueArrayColumnDeserialize is used
when join engine results have to be sent from
one node to another in scale-out scenarios.

Pool/XDictData
Intermediate
OLAP engine
dictionary data

See question "Which general optimizations
exist for reducing the SQL statement memory
requirements?" below in order to make sure
that SQL statements are executed as memory-
efficient as possible. This allocator stores
dictionary data during query processing in the
OLAP engine. It can grow significantly if
columns with many distinct values are
processed and filters don't exist or aren't
pushed down.

Pool/XSEngine/XSJobScheduler/_<ap
plication>
Pool/XSEngine/XSJobScheduler/_<ap
plication>/_<job_name>

XS engine jobs

These heap allocators contain information
related to XS engine jobs. Every job creates an
own instantiation of the allocator, so the
number of allocator instantiations can be
particularly high. The size is at the same time
typically at a reasonable level. Starting with
SAP HANA 1.00.122.16, 2.00.012.05 and
2.00.024 jobs with the same name use the
same allocator and so the amount of allocator
instantiations can be significantly lower. There
is no way to purge old jobs from the allocator.
After a SAP HANA restart the allocator starts
again from scratch.

This allocator contains thread stack data.
Large sizes are typically caused by a large
number of threads or be large settings of the
following stack size parameters: global.ini ->
[threads] -> default_stack_size_kb global.ini ->
[threads] -> worker_stack_size_kb These
parameters should normally remain on default

StackAllocator Thread stacks

52 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

values, adjustments are only required in
specific situations (e.g. SAP Note 1847202).

VirtualAlloc

SAP HANA
external
memory
management

This allocator is related to memory allocations
outside of the standard SAP HANA memory
management, e.g. related to Java Virtual
Machine (JVM).

14. How can I identify how a particular heap allocator is populated?

You can use the tool hdbcons on operating system level in order to understand better how a heap allocator is
filled (SAP Note 2222218). Typical commands are:

Command Example Purpose

help mm Overview of all memory management (mm) related command options

mm bl -t
<allocator>

mm bl -t
Pool/Statistics

Show top memory contributors ("block list") in <allocator> sorted by used size
descending

mm cg -o
<file>.dot
<allocator>

mm cg -o
callgraph.dot
Pool/Statistics

Generate output file with allocator stack trace information for <allocator>

mm f
<allocator>
as

mm f
Pool/Statistics
as

Activation of allocator call stack trace for <allocator> Particularly useful in
case of suspected memory leaks so that you can understand from which
modules the memory allocations are mainly performed Can result in
significant overhead and should only be activated for limited times

mm f
<allocator>
as -d

mm f
Pool/Statistics
as -d

Deactivation of allocator call stack trace for <allocator>

mm ru mm ru Reset all previous measurements ("reset usage")

mm top -l
<num>
<allocator>

mm top -l 20
Pool/Statistics

Generate report with top <num> call stacks recorded for <allocator>

pageaccess
a

Provide breakdown of Pool/PersistenceManager/Persisten
tSpace(0)/DefaultLPA/Page content based on page type, e.g.: ConvIdxPage
256k Temp : 1 (262144 Byte) ConvLeafPage 256k Temp : 130 (34078720
Byte) TidCidMappingPage 256k Short : 1 (262144 Byte) FileIDMappingPage
256k Temp : 172 (45088768 Byte) FileIDMappingPage 256k Short : 2
(524288 Byte) ContainerDirectoryPage 256k Short : 35 (9175040 Byte)
ContainerDirectoryPage 256k Long : 2 (524288 Byte)
ContainerNameDirectoryPage 256k Long : 1 (262144 Byte) UndoFilePage
64k Short : 707 (46333952 Byte) VirtualFilePage 4k InternalShort : 134
(548864 Byte) VirtualFilePage 16k InternalShort : 57 (933888 Byte)
VirtualFilePage 64k InternalShort : 325 (21299200 Byte) VirtualFilePage 256k
InternalShort : 196 (51380224 Byte) VirtualFilePage 1M InternalShort : 552
(578813952 Byte) VirtualFilePage 4M InternalShort : 2832 (11878268928
Byte) VirtualFilePage 16M InternalShort : 9458 (158678908928 Byte)
VarSizeEntryBasePage 256k Short : 809 (212074496 Byte) ...

Example 1 (check for top memory contributors in allocator):

mm bl -t Pool/RowEngine/MonitorView

53 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/2222218

19999972018-07-24

This output indicates that more than 100 GB of allocator Pool/RowEngine/MonitorView is consumed by the
ExpensiveStatementsMonitor and so optimizations like adjustments to the expensive statements trace or
implementing a bugfix to resolve a memory leak problem can be considered.

Example 2 (create an allocator call stack trace and extract top 5 call stacks)

mm ru mm f Pool/Statistics as -- Now wait until a representative amount of allocations is

captured mm top -l 5 Pool/Statistics mm ru mm f Pool/Statistics as -d

15. How often are OOM dumps written?

In case of OOM situations SAP HANA may write a dump, e.g.:

<service>_<host>.<port>.rtedump.<timestamp>.oom.trc•
<service>_<host>.<port>.rtedump.<timestamp>.after_oom_cleanup.trc•
<service>_<host>.<port>.rtedump.<timestamp>.compositelimit_oom.trc•
<service>_<host>.<port>.rtedump.<timestamp>.oom_memory_release.trc•

For more details about the different dump types see SAP Note 2000003 ("Which types of dumps can be
created in SAP HANA environments?").

Not every OOM termination results in an OOM dump because in case of a memory bottleneck many different
transactions can run into an OOM error within a short time frame. Per default a SAP HANA service only
creates an OOM dump if the last dump was written at least one day ago. This behaviour can sometimes be of
disadvantage when two individual OOM situations should be analyzed that happened within less than 24
hours.

In special cases you can reduce the minimum time between two OOM dumps using the following SAP HANA
parameter:

global.ini -> [memorymanager] -> oom_dump_time_delta = <min_seconds_between_oom_dumps>

If you set the parameter for example to 7200, the minimum interval between two OOM dumps will be two
hours (7200 seconds).

16. Where can I find more information regarding SAP HANA memory consumption?

The document SAP HANA Memory Usage Explained provides a good overview of different types of memory
in SAP HANA environments.

17. How can the resident memory be smaller than the allocated memory?

Normally the allocated memory should be fully contained in the resident memory, nevertheless there are a
few exceptions:

If parts of the virtual memory are paged out to disk, the resident memory can be smaller than the
allocated memory.

•

There are technical constellations where parts of the heap memory and the row store shared memory •

54 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/2000003
http://go.sap.com/germany/documents/2016/08/205c8299-867c-0010-82c7-eda71af511fa.html

19999972018-07-24

are marked as used, but not as resident.

18. What are typical reasons for significant size differences in memory vs. on disk?

The allocation of tables in memory and on disk may significantly differ for the following reasons:

Reason Symptom Details

No logging tables
Memory
> disk

Tables created with the NO LOGGING option are not persisted to disk. See
SAP Note 2000003 ("What kind of temporary and non-persisted tables can
be created with SAP HANA?") for more information.

Temporary tables
Memory
> disk

Tables created with the TEMPORARY option are not persisted to disk. See
SAP Note 2000003 ("What kind of temporary and non-persisted tables can
be created with SAP HANA?") for more information.

Single column and
row store indexes

Memory
> disk

Single column indexes and row store indexes aren't persisted to disk. See
SAP Note 2160391 ("Are indexes persisted to disk?") for more information.

Logically moved
tables

Memory
> disk

If tables are moved logically, their disk footprint can be significantly smaller
than the size in memory. See SAP Note 1994408 for more information.

Hybrid LOBs
Disk >
memory

Large hybrid LOB values (SAP Note 1994962) are not loaded into memory,
so the disk size of tables is larger than the memory size.

Partially loaded
tables

Disk >
memory

If columns of a table are only partially loaded into the memory, the disk size
is larger than the current memory size. You can use SQL:
"HANA_Tables_LargestTables" (SAP Note 1969700) to check disk size,
potential maximum memory size and current memory size.

Data fragmentation
Disk >
memory

A fragmented data area can significantly increase the disk requirements.
You can use SQL: "HANA_Disks_Overview" (SAP Note 1969700) to check
for the amount of fragmentation on disk side.

L2 delta migration
Disk >
memory

When upgrading from SAP HANA <= SPS 08 to SAP HANA >= SPS 09 an
L2 delta migration takes place that can temporarily increase the disk space
requirements significantly. See SAP Note 2349081 for more information.

Large MVCC size
Disk >
memory

MVCC information (SAP Note 2169283) can allocate additional space on
disk. SAP Note 2146989 discusses a specific MVCC issue in context of
upgrades to SAP HANA 1.0 SPS 09. You can use SQL:
"HANA_Tables_DiskSize_UnifiedTabl
es" (SAP Note 1969700) in order to check for table disk sizes including
MVCC space.

Activities with
heavy data
movement (table
redistribution,
migration, data
load, delta merge
or optimize
compression of
large tables)

Disk >
memory

Processing a larger amount of data can result in an temporary increase of
disk space requirements for various reasons (shadow pages, snapshots,
uncompressed columns, interim tables, ...). For that reason the Storage
Whitepaper available via SAP Note 1900823 recommends to make sure that
the double data size should be used during operations like table
redistribution or migration import.

Database snapshots can result in significantly increased disk space
requirements, because the before image of modified blocks needs to be
stored in addition to the normal data blocks. Therefore you should make
sure that old snapshots are deleted. SQL: "HANA_IO_Snapshots" (SAP

Database
snapshots

Disk >
memory

55 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Note 1969700) can be used to check for old snapshots. See SAP Note
2100009 for more information related to savepoints and snapshots. You can
use the hdbcons command "snapshot a <snapshot_id>" (SAP Note
2222218) to find out how much disk space is allocated due to a snapshot. In
the output you can find the relevant size information: dropping this snapshot
would free <num_pages> pages with total size of <size_MB> MB See SAP
Note 2100009 ("What are reasons for snapshots being retained for a long
time?") for typical situations when snapshots exist for a long time.

Low savepoint
frequency

Disk >
memory

Normal savepoints work in a similar way like database snapshots and all
pages referenced by one savepoint are kept until the next savepoint
succeeds. If a page is changed, both the former version and the new version
needs to be stored in parallel. Normally this doesn't result in a significantly
increased disk space, but in case of a low savepoint frequency (e.g. due to a
very long running savepoint or due to a high setting of parameter global.ini -
> [persistence] -> savepoint_interval_s) or in case of a high change load the
persistence overhead can be significant. See SAP Note 2100009 for more
information related to savepoints and snapshots. In this scenario you can
observe a rising amount of shadow pages and check ID 383 ("Max. size of
shadow pages (GB, last day)") of the SAP HANA Mini Checks (SAP Note
1999993) can be reported as potentially critical.

Garbage collection
blocked

Disk >
memory

Blocked persistence garbage collection can result in a significant increase of
disk space. SAP Note 2169283 describes how to analyze issues with
garbage collection.

Large DELETE /
TRUNCATE

Disk >
memory

As described in SAP Note 2014987 the disk size can remain at a high level
after having performed a large DELETE or TRUNCATE operation. The
amount of allocated disk space can be 16 MB * <num_columns> *
<num_partitions> in the worst case. Proceed as described in SAP Note
2014987 in order to reduce the allocated disk size.

Orphan disk LOBs
Disk >
memory

Orphan disk LOBs can be responsible for a significant space allocation on
disk that isn't reflected in the memory. See SAP Note 2220627 ("Can there
be orphan disk LOBs?") for more information related to orphan disk LOBs.

LOB fragmentation
Backup >
disk

Although this kind of space overhead doesn't properly fit here (because disk
LOBs are never loaded into memory), it should be mentioned for
completeness purposes. LOBs are allocated with fix page sizes (>= 4 KB)
and so there can be significant unused space, particularly if you have many
small LOB values smaller than 4 KB. See SAP Note 2220627 for more
information related to LOBs. You can use SQL: "HANA_LOBs_LOBFiles"
(SAP Note 1969700) in order to check for allocated LOB space
(PHYS_SIZE_MB) and used LOB space (BIN_SIZE_MB). Due to the fact
that the full pages are backed up, the backup size can be significantly larger
than the used disk size in some cases.

19. Which general optimizations exist for reducing the SQL statement memory
requirements?

The following heap allocators are used in context of processing database requests (e.g. for intermediate
result sets and structures) and usually their life time ends when the database request is finished:

Pool/AttributeEngine/Transient•
Pool/AttributeEngine/Transient/updateContainerConcat•
Pool/CSPlanExecutor/PlanExecution•

56 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

Pool/DocidValueArray•
Pool/ExecutorPlanExecution•
Pool/Filter•
Pool/itab•
Pool/itab/VectorColumn•
Pool/JoinEvaluator•
Pool/JoinEvaluator/DictsAndDocs•
Pool/JoinEvaluator/JEAssembleResults•
Pool/JoinEvaluator/JEAssembleResults/Results•
Pool/JoinEvaluator/JECalculate•
Pool/JoinEvaluator/JECalculate/TmpResults•
Pool/JoinEvaluator/JECalculate/Results•
Pool/JoinEvaluator/JECreateNTuple•
Pool/JoinEvaluator/JEPlanData/deserialized•
Pool/JoinEvaluator/JEPreAggregate•
Pool/JoinEvaluator/JERequestedAttributes/Results•
Pool/JoinEvaluator/JEStep1•
Pool/JoinEvaluator/JEStep2•
Pool/JoinEvaluator/NTuple•
Pool/JoinEvaluator/PlanDataAttrVals/Deserialized•
Pool/JoinEvaluator/ValueList•
Pool/malloc/libhdbcalcengine.so•
Pool/malloc/libhdbcalcengineapi.so•
Pool/malloc/libhdbcalcenginepops.so•
Pool/malloc/libhdbcswrapper.so•
Pool/malloc/libhdbevaluator.so•
Pool/malloc/libhdbolap.so•
Pool/mds•
Pool/parallel/aggregates•
Pool/parallel/align•
Pool/parallel/compactcol•
Pool/parallel/ihm•
Pool/parallel/pop•
Pool/parallel/temp_aggregates•
Pool/parallel/temp_dimensions•
Pool/parallel/temp_other•
Pool/RowEngine/LOB•
Pool/RowEngine/MonitorView•
Pool/RowEngine/QueryExecution•
Pool/RowEngine/QueryExecution/SearchAlloc•
Pool/SearchAPI•
Pool/SearchAPI/Itab Search•
Pool/StringContainer•
Pool/ValueArray•
Pool/XDictData•

To a certain extent this specific allocator class can also be identified in monitoring view M_HEAP_MEMORY
with COMPONENT = 'Statement Execution & Intermediate Results', but the assignment to this class is not
always 100 % precise.

The following general rules can help to reduce memory requirements of SQL statements during execution:

Rule Details

57 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

As few rows as possible
Use as many restrictions as possible so that the amount of fetched records
is as small as possible.

As few columns as possible Select as few columns as possible. Avoid "SELECT *" whenever possible.

Avoid UNION ALL, UNION,
INTERSECT, EXCEPT

These operations can't be handled by the column engine and so
optimizations like late materialization (SAP Note 1975448) are not possible.
As a consequence the memory requirements can significantly increase.
Therefore you should use alternative whenever possible (e.g. OR instead of
UNION or UNION ALL).

BW: Configure safety belt
If BW queries read a large amount of data, check if it is possible to
configure the query safety belt as described in SAP Note 1127156.

Homogeneous user for
composite provider / stacked
calculation view on top of
scripted calculation view

If the user of a composite provider / stacked calculation view and of an
inner scripted calculation view is different, predicate pushdown may be
impacted and so a high memory consumption related to intermediate result
set allocators is possible. Either make sure that the owner is identical or
define the scripted calculation view in "Invoker" mode.

If the memory consumption of these allocators remains at levels that can hardly be explained by executions
of database requests, you can consider the following technical SAP HANA root causes:

Scenario Details

Memory leak

If you see a steady size increase, it can be caused by a memory leak, e.g.: SAP Note
2062555 (join operation in the subquery of an UPDATE statement, fixed with Rev. 1.00.83)
SAP Note 2088349 (querying calculation views with currency conversion, fixed with Rev.
1.00.84) If you suspect a memory leak that is not documented, yet, open a SAP incident on
component HAN-DB in order to request a more detailed analysis.

SAP HANA
internal

reference still
open

Normally the statement specific heap allocators should be relased as soon as the database
request ends. Due to SAP HANA bugs it can happen that the cleanup isn't performed if
certain references (like temporary tables) still exist. You can check if you suffer from this
scenario by clearing the SQL cache globally or some suspicious entries individually. See SAP
Note 2124112 ("How can entries in the SQL cache be invalidated or reparsed manually?") for
more information. Attention: Clearing the SQL cache results in additional parsing
requirements and so temporary performance regressions are possible. The following already
known scenarios exist: SAP Note 2312976 (DML operations, problem exists for Rev.
1.00.100 - 1.00.102.06 and 1.00.110 - 1.00.112.01) SAP Note 2312983 (memory leak in
Pool/parallel/aggregates when querying on distributed environment with SAP HANA 1.00.100
- 1.00.102.06 and 1.00.110 - 1.00.112.02) SAP Note 2533352 (no proper cleanup after
execution, fixed with SAP HANA >= 1.00.122.13, >= 2.00.012.02 and >= 2.00.021) SAP Note
2535110 (Memory Leak on Pool/parallel/compactcol and Pool/parallel/aggregates or Pool/itab
with SAP HANA <= 1.00.122.12, <= 2.00.012.01 and 2.00.020) If the size of statement
allocators reduces significantly after clearing the SQL cache, you can use this approach as a
workaround and additionally open a SAP incident on component HAN-DB in order to request
a fix for this behavior.

No cleanup
in context of
terminations

The following scenarios can be responsible for an incomplete cleanup in case of terminations:
SAP HANA Revisions <= 1.00.122.12, <= 2.00.002.02, <= 2.00.012.01 and 2.00.020 can
suffer from an increase in Pool/itab in context of INSERT abortions (SAP Note 2535110).
With SAP HANA <= 1.00.122.15 the smart data access (SDA, SAP Note 2180119) related
internal procedure SDA_SELECT_AS_ITAB_DEV isn't OOM safe and so memory can remain
allocated after an out-of-memory situation. With SAP HANA <= 1.00.122.15, <= 2.00.012.04
and <= 2.00.24 an OOM termination can result in an incomplete cleanup of memory
allocations of distributed queries (SAP Note 2612022).

58 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

BW
temporary

tables

In BW environments the high utilization can be linked to temporary objects. In this case you
can run report RSDDTMPTAB_DELETE to drop these temporary objects in order to check if it
has a positive impact on the Pool/itab size (SAP Note 2352541). Be aware that running this
report can result in terminations of currently running reports.

Planning
engine

If the allocator size is large in context of planning engine activities, you can check if dropping
no longer required planning sessions can help to reduce the allocations (SAP Note 2169283 -
> "How can garbage collection be triggered manually?" -> "Planning engine garbage
collection"). SAP Note 2583148 describes a problem with missing garbage collection in
context of the TMA application.

MDX

If you execute MDX queries (e.g. using SAP HANA Studio), make sure that you explicitly
close MDX requests (MDX CLOSE REQUEST <guid>) when you no longer need them. A
COMMIT will not automatically close the requests. If you suspect orphan MDX queries (e.g.
because MDX CLOSE REQUEST wasn't executed), you can check for MDX related
temporary tables in M_TEMPORARY_TABLES (MDX_..._<guid>). By dropping these tables
(DROP TABLE _SYS_BIC.MDX_..._<guid>) also the related internal tables should be
dropped. Only drop these tables if you are sure that they are no longer required.

BPC queries
with MDX

If BPC reports are executed on the system, the results may not be closed properly in context
of ENABLE_HANA_MDX = 'X' (SAP Note 2108247).

Smart data
access

If you use smart data access (SAP Note 2180119) with Rev. <= 1.00.85.02 or Rev. 1.00.90 -
1.00.91, a SAP HANA bug can be responsible for growing Pool/itab requirements. Upgrade to
a more recent SAP HANA Revision in order to resolve the problem. See SAP Note 2242507
for more information.

20. How can the tables with the highest memory consumption be determined?

You can use SQL: "HANA_Tables_LargestTables" (SAP Note 1969700) in order to check for the largest
tables in memory. The following ORDER_BY settings are possible:

ORDER_BY Details

MAX_MEM

The tables (including indexes and LOBs) with the highest possible maximum memory
consumption are shown. The maximum memory information is independent of the
currently loaded columns and so it provides a general overview independent of the
current load state.

CURRENT_MEM
The tables with the highest current memory consumption (including indexes and LOBs)
are displayed.

TABLE_MEM
The tables with the highest current memory consumption (excluding indexes and LOBs)
are displayed.

INDEX_MEM The tables with the highest index memory consumption are displayed.

Be aware that there are situations where the maximum memory information
(M_CS_TABLES.ESTIMATED_MAX_MEMORY_SIZE_IN_TOTAL) is not filled properly, particularly after
DDL operations with SPS 08 and below. If you have doubts you can user ORDER_BY = 'TOTAL_DISK' to
display the tables with the highest disk space consumption.

21. How much swap space should be configured for SAP HANA hosts?

It is recommended to configure a small swap space in order to avoid performance regressions at times of
high memory utilization on operating system side. Instead it is usually better if activities are terminated with
"out of memory" errors. This makes sure that the overall system is still usable and only certain requests are

59 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/1969700

19999972018-07-24

terminated. A good value for the swap space is 2 GB (see e.g. SAP Note 1944799 for SLES environments).

22. What is memory garbage collection?

Memory garbage collection and defragmentation is done in order to release no longer used memory. It is not
required to perform this task manually as SAP HANA will automatically take care for this activity whenever
required. In exceptional cases you can trigger / configure memory garbage collection manually:

Command / Setting
SAP
Note

Details

hdbcons 'mm gc -f' 2222218

This command triggers an immediate garbage
collection. Defragmentation will happen as much as
possible. Attention: Executing this command has
potentially critical side-effects like a temporary
blockage of business operations, a reduction of
address space or - in the long run - increased
memory fragmentation. Therefore it must only be
executed when advised by SAP support.

global.ini -> [memorymanager] ->
gc_unused_memory_threshold_abs
global.ini -> [memorymanager] ->
gc_unused_memory_threshold_rel

2169283

These parameters trigger a garbage collection when
both the absolute and relative value is exceeded. As
soon as one of the configured limits is reached,
memory garbage collection stops. Attention: Setting
these parameters can result in frequently recurring
memory defragmentation activities and related
performance regressions. If at all, you should set
these parameters only temporarily (e.g. for a few
minutes) during a less critical time frame. Unsetting
the parameters will not stop the initial
defragmentation.

Attention: Setting these parameters can cause significant performance issues, so they shouldn't be used
unless explicitly requested by SAP support.

The following problems are possible when triggering manual memory garbage collection:

Risk Details

OOM
situations

Each memory garbage collection has an impact on the virtual address space utilization and
so the risk of out-of-memory terminations because of address space limitations increases.
See "Which indications exist that an OOM situation is triggered by the operating system?"
for more information.

Performance
regressions

At runtime of a memory garbage collection SAP HANA internal lock contention can result in
reduced performance and increased resource consumption. In busy systems contention and
spin locks on operating system side are possible when releasing memory back to the
operating system. This scenario results in increased system CPU consumption and page
faults. As a workaround the following parameter can be set in order to execute the
defragmentation sequentially: indexserver.ini -> [memorymanager] ->
disabled_parallel_tasks = poolgarbagecollection

23. Why do I get an OOM although the SAP HANA allocation limits aren't reached?

60 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/1944799

19999972018-07-24

The following reasons can be responsible for OOM situations although neither the global nor the process
specific allocation limits aren't reached:

Reason Details

Operating
system
memory
exhausted

Check if the available memory is exhausted on operating system side, e.g. because of
external software allocating a lot of memory, large caches or another SAP HANA instance.
Make sure that in the future there is always enough physical memory available to host the
complete SAP HANA allocation limit. See "Which indications exist that an OOM situation is
triggered by the operating system?" below for more details.

Small
temporary
process
allocation limit

Based on the defined allocation limits SAP HANA and the current service memory
allocations the temporary process allocation limit (TPAL) may be significantly smaller than
the defined allocation limit. As a consequence OOMs are possible although the configured
allocation limits aren't reached. SAP Note 2133638 describes a related startup issue that
can happen as of Rev. 90.

Statement
memory limit
reached

OOM dumps with "compositelimit" in their names are no global memory shortages. Instead
they are linked to a defined statement memory limit. See "Is it possible to limit the memory
that can be allocated by a single SQL statement?" above for more details.

24. How can I involve SAP to perform a detailed memory check?

A detailed SAP HANA memory check and further general health checks and performance optimiaztions are
performed as part of the SAP HANA Technical Performance Optimization Service (TPO). See SAP Note
2177604 for more information.

25. Why is the allocated memory in some heap allocators very large?

The column EXCLUSIVE_ALLOCATED_SIZE in monitoring view M_HEAP_MEMORY (respectively
HOST_HEAP_ALLOCATORS) contains the sum of all allocations in this heap allocator since the last startup.
Normally also a lot of deallocations happen, so the EXCLUSIVE_ALLOCATED_SIZE can be much higher
than the currently allocated size. For example, if over time 100 MB are allocated and deallocated 10 times,
the actual allocated size is 0, but EXCLUSIVE_ALLOCATED_SIZE would show 1 GB (10 * 100 MB).

If the overall allocated memory is much higher than the overall used memory, the difference is usually free for
reuse, so no longer heap allocator specific. Therefore the EXCLUSIVE_ALLOCATED_SIZE information can
only be used to understand which heap allocators have the highest "throughput" in terms of memory
allocations, but it is not helpful to understand the current memory situation.

26. Why does PlanViz show a high "Memory Allocated" figure?

If you observe a high "Memory Allocated" figure in PlanViz (SAP Note 2073964) that may significantly exceed
the configured statement_memory_limit setting, this is typically caused by the same reason like discussed in
the previous question: PlanViz summarizes the overall memory allocation irrespectively of intermittent
deallocations. As a consequence the recorded allocated memory can be much higher than maximum
memory allocation at a specific point in time.

See SAP Note 2302903 for more information.

27. Why does the delta storage allocate more memory with SAP HANA SPS >= 09?

With SAP HANA SPS 09 the delta storage was significantly adjusted. As a consequence the minimum
memory footprint of the delta storage of a loaded empty column increased from around 2 KB to more than 8

61 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/2177604
https://i7p.wdf.sap.corp/sap/support/notes/2073964
https://i7p.wdf.sap.corp/sap/support/notes/2302903

19999972018-07-24

KB. Having many empty tables with many columns this can increase the overall delta storage size by 10 GB
and more. This is an expected behavior that can't be changed.

28. Are there any special memory considerations for multitenant databases?

In multitenant database container (MDC) scenarios (SAP Note 2101244) you should make sure that
individual containers don't consume excessive amounts of memory, impacting other containers or the system
database. On tenant level the memory can be controlled by the service specific parameter global.ini ->
[memorymanager] -> allocationlimit in the best way. Optimally the sum of all tenant allocation limits sums up
to the global allocation limit, but it is also possible to exceed it.

Example:

Global allocation limit: 1000 GB•
Tenant service allocation limits: 500 GB, 400 GB, 300 GB•

If only a single tenant reaches its allocation limit while the others are well below, the global allocation limit
isn't exceeded. Only when several tenants approach their individual allocation limit, the global allocation limit
can become a real limit and result in OOMs in all tenants.

Furthermore the following special MDC memory parameters exist:

Parameter Unit Default Validity Details

global.ini -> [multidb] ->
systemdb_reserved_me
mory

MB 0
>= SPS
12

This parameter allows you to configure a minimal
amount of memory (in MB) to be exclusively used
by the MDC system database.

29. Which errors indicate memory issues on SAP HANA client side?

Normally memory issues are more likely on SAP HANA server side, but in some scenarios also the SAP
HANA client can run into a memory bottleneck. In this case you can see terminations with the following client
error:

SQL error -9300: no more memory SQL error -10760: Memory allocation failed

In SAP ABAP client environments you may find short dumps like DBSQL_ALLOCATION_FAILED,
DBSQL_DBSL_NO_MEMORY or DBSQL_NO_PERM_MM_MEMORY for similar reasons.

If you experience these errors, there is usually something wrong with the general memory configuration on
client side (operating system or client product like SAP ABAP), e.g. wrong ulimit settings.

30. Can there be fragmentation in the heap memory?

Yes, heap memory can fragment to a certain extent. When an out-of-memory situation happens and the
allocated memory is still higher than the used memory, the difference is caused by heap memory
fragmentation. You can find related fragmentation information in the out-of-memory dump (SAP Note
1984422), e.g.:

Total allocated memory= 760083382272b (707.88gb) Total used memory = 665270861313b (619.58gb)

Heap memory fragmentation: 12

In general a heap memory fragmentation up to 15 % can be considered as acceptable.

A particularly high, non-reclaimable fragmentation can be a consequence of underlying limitations /

62 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/2101244
https://i7p.wdf.sap.corp/sap/support/notes/1984422

19999972018-07-24

configuration issues, e.g. an inadequate setting of /proc/sys/vm/max_map_count. See "Which indications
exist that an OOM situation is triggered by the operating system?" for more information.

Be aware that the calculation of the memory fragmentation in trace files can show misleading high values in
case of large memory allocation requests, e.g.:

Failed to allocate 2565818396904 byte.

...

Heap memory fragmentation: 58% (this value may be high if defragmentation does not help solving

the current memory request)

This combination (high 2.4 TB allocation request, high 58 % fragmentation) typically indicates that the high
fragmentation value isn't reliable and should be ignored at this point. It is more important to understand and
resolve the high memory allocation request.

If you want to check for the current heap memory fragmentation, you can use SQL:
"HANA_Memory_ProcessMemory" (SAP Note 1969700).

Example:

--

|HOST |PORT |PAL_GB

|ALLOC_GB|HEAP_USED_GB|FREE_GB|FRAG_GB|ALLOC_PCT|HEAP_USED_PCT|FREE_PCT|FRAG_PCT|

--

|saphana|30003| 176.55| 176.14| 155.34| 0.00| 20.80| 99.77| 87.98| 0.00| 11.78|

--

Effects of different cleanup options on these numbers:

Internal ad-hoc defragmentation or manual "hdbcons 'mm gc'": Reduction of FRAG_GB, increase of
FREE_GB

•

Reclaim defragmentation or manual "hdbcons 'mm gc -f'": Minimization of FREE_GB and FRAG_GB•
Reclaim shrink or manual "hdbcons 'resman s'": Reduction of HEAP_USED_GB•

Before an OOM is triggered, SAP HANA will always reduce fragmentation as much as possible. It is also
possible - but usually not required - to trigger the defragmentation manually as described in "What is memory
garbage collection?" above.

31. Which indications exist that an OOM situation is triggered by the operating
system?

The following indications exist that an out-of-memory situation is triggered by the operating system and not by
SAP HANA:

Symptom Detail

<service>_<host>.<port>.rtedump.<timestamp>.oom_me
mory_release.trc dump

This type of SAP HANA dump is only
generated in combination with operating
system related OOM situations.

[MEMORY_OOM] section in OOM dump: Sum of AB (allocated
byte) significantly smaller than
GLOBAL_MAX_ALLOCATION_LIMIT "--- precharge ok ---"
entries in "Out of memory reasons" overview "Could not return

If the sum of allocated memory is smaller
than the SAP HANA global allocation limit
(and the amount of requested memory is
not extraordinary large), the OOM is

63 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/1969700

19999972018-07-24

<bytes>b to operating system. This is a configuration problem of
your operating system: Please increase
/proc/sys/vm/max_map_count" Other information in OOM dump:
Rather small value for /proc/sys/vm/max_map_count (SAP Note
1980196) Value smaller than 100 for SOFTVIRTUALLIMIT in
/etc/sysconfig/ulimit in combination with an installed ulimit.rpm
package ("rpm -qa | grep ulimit")

normally triggered from outside of SAP
HANA. In this case you may also see "---
precharge ok ---" information in the OOM
dump. Reasons can be: Ulimit memory
limitation (e.g. due to installed ulimit.rpm
package or because of explicit
configuration) Inadequate
/proc/sys/vm/max_map_count setting
(SAP Note 1980196) High ulimit setting
for stack (SAP Note 2488924) Insufficient
physical memory (e.g. due to inadequate
SAP HANA memory settings or external
software consuming a lot of memory)
Address space limit reached (Intel: 128
TB, Power: 16 TB, Power with bigmem:
64 TB); make sure that bigmem flavor is
used with Power on SLES 11.x; on SLES
>= 12 bigmem is already default

/var/log/messages contains messages like: <process> invoked
oom-killer Out of memory: Kill process <pid> (hdbindexserver)
score <score> or sacrifice child

This OOM killer functionality of Linux is
used whenever it runs short on physical
memory. In this case processes are
terminated in order to reclaim memory.

If you face these symptoms, you can proceed as described in question "Which options exist to reduce the risk
of SAP HANA memory issues?" -> "OS configuration" and "Strict NUMA memory binding" above.

32. What is the SAP HANA resource container?

The SAP HANA resource container consists of the row store and heap allocators with information that may
be re-used like:

SAP HANA page cache (Pool/PersistenceManager/PersistentSpace/DefaultLPA/Page)•
Column store tables•

It doesn't cover heap areas that can't be re-used - particulary related to SQL statement data processing, e.g.:

Pool/itab•
Pool/JoinEvaluator/JEAssembleResults•
Pool/parallel/aggregates•
Pool/RowEngine/MonitorView•

Pool/TableConsistencyCheck•

There is no easy approach to identify allocators assigned to the resource container.

You can use SQL: "HANA_Memory_MemoryObjects" (SAP Note 1969700) in order to check for the current
population of the resource container. The hdbcons command "resman info" (SAP Note 2222218) provides
general information related to the current resource container state.

When additional memory is required and not available, SAP HANA can shrink the resource container (e.g. by
reduction of certain heap allocators or unloading columns). In this case the database trace (SAP Note
2380176) will contain an entry like the following:

Information about shrink at <date> <time> Local: Reason for shrink: Precharge for big block

64 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/1969700
https://i7p.wdf.sap.corp/sap/support/notes/2222218
https://i7p.wdf.sap.corp/sap/support/notes/2380176

19999972018-07-24

allocation.

The hdbcons command "resman shrink", as e.g. suggested in SAP Note 2301382, only works on the
resource container, external allocators can't be shrunk with this command.

33. How can the types in M_MEMORY_OBJECTS be mapped to allocators?

The object types in monitoring view M_MEMORY_OBJECTS use an individual naming convention. The most
important object types can be mapped in the following way:

Type Allocators / Memory Details

AttributeEngine/AttributeValueCon
tainerElement

Pool/AttributeEngine* Pool/ColumnStoreTables*
Column store
tables

Cache/Hierarchy Pool/hierarchyBlob Hierarchy cache

Persistency/Pages/Default

Pool/PersistenceManager/Persisten
tSpace(0)/DefaultLPA/Page
Pool/PersistenceManager/Persisten
tSpace/DefaultLPA/Page

SAP HANA page
cache

Persistency/Pages/RowStore
Shared Memory (allocators Pool/RowStoreTables/*
aren't persisted)

Row store

Starting with SAP HANA 2.0 SPS 01 the mapping can be retrieved from monitoring view
M_MEMORY_OBJECT_DISPOSITIONS.CATEGORY.

34. In which order are objects unloaded from the resource container?

The unload order of objects in the resource container depends on disposition and unload priority (SAP Note
2127458) settings. A rough mapping is shown in the following table, in general one object type can have
portions assigned to different dispositions:

Disposition Related objects Parameter Default

early unload
columns of tables

with unload priorities
6 to 9

global.ini -> [memoryobjects] ->
disposition_weight_early_
unload

100

paged attribute
paged attributes

(SAP Note 1871386)

global.ini -> [memoryobjects] ->
disposition_paged_attribu
te

300

(internal) short term
SAP HANA page
cache Hierarchy

cache

global.ini -> [memoryobjects] ->
disposition_weight_short_
term

300

lob read lob read
small lob write lob

write small
disk LOBs

indexserver.ini -> [persistence] ->
disposition_lob_read indexserver.ini -> [persistence] -
> disposition_lob_read_smal
l indexserver.ini -> [persistence] ->
disposition_lob_write indexserver.ini -> [persistence] -
> disposition_lob_write_sma
ll

300

mid term
global.ini -> [memoryobjects] ->
disposition_weight_mid_te
rm

900

65 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/2301382
https://i7p.wdf.sap.corp/sap/support/notes/2127458

19999972018-07-24

long term
columns of tables

with unload priorities
1 to 5

global.ini -> [memoryobjects] ->
disposition_weight_long_t
erm

2700

non swappable
columns of tables

with unload priority 0
row store

0

The disposition weight is divided by the time since the last access of a resource and resources with the
smaller resulting values are unloaded first.

Example:

Column with unload priority 5 last touched 10 hours ago -> disposition result value (based on hours) =
2700 / 10 = 270

•

Page in page cache last touched 1 hour ago -> disposition result value (based on hours) = 300 / 1 =
300

•

The column has the lower result value (270 vs. 300) and so it is unloaded earlier than the page of the
page cache.

•

In general it is not required to adjust the disposition parameters because the weight factors provide a
reasonable overall unload priority, except in a few scenarios:

In case of critical bugs in the context of unloads it can be useful to increase
disposition_weight_long_term and disposition_wait_early_unload (e.g. by factor 10 to 100) in order to
make sure that the page cache is unloaded with a higher priority than usual and column unloads are
the last resort in case of memory shortage.

•

The same applies when you want to minimize column store unloads (e.g. in order to avoid unnecessary
reloads or alerts). Be aware that column store unloads can be considered as harmless when only
tables with unload priority >= 6 or rarely accessed tables are unloaded. In this case it is neither
required nor recommended to adjust the default settings.

•

Due to a bug with SAP HANA <= 122.03 it can happen that column unloads happen in an undesired order
and critical columns are unloaded earlier than intended (SAP Note 2458491). In this case you can manually
unload non-critical columns as a workaround (SAP Note 2127458).

You can use SQL: "HANA_Memory_Objects_Dispositions" (SAP Note 1969700) in order to check for current
disposition / objects / allocators mappings in a system.

Example:

--

|OBJECT_TYPE |DISPOSITION |OBJECT_COUNT|OBJECT_SIZE_GB|SIZE_PER_OBJECT_KB|

--

|AttributeEngine/AttributeValueContainerElement |LONG_TERM | 1283759| 3442.49| 2811.83|

|Cache/HierarchyCache |SHORT_TERM | 7209| 499.31| 72627.05|

|Persistency/Pages/Default |INTERNAL_SHORT_TERM| 194839| 161.37| 868.47|

|Persistency/Pages/RowStore |NON_SWAPPABLE | 7364608| 116.92| 16.64|

|Persistency/Pages/Default |SHORT_TERM | 1400790| 102.45| 76.69|

|Cache/MdxHierarchyCache |SHORT_TERM | 1225| 40.59| 34744.45|

|AttributeEngine/AttributeValueContainerElement |NON_SWAPPABLE | 1295833| 8.95| 7.24|

|Persistency/Pages/Default |LONG_TERM | 236301| 5.27| 23.42|

|Persistency/Container/VirtualFile |SHORT_TERM | 3505507| 3.13| 0.93|

|Persistency/Pages/Default |TEMPORARY | 3983| 2.65| 699.15|

|Persistency/Pages/Converter/Default |TEMPORARY | 5667| 1.39| 258.69|

--

66 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/2458491
https://i7p.wdf.sap.corp/sap/support/notes/2127458
https://i7p.wdf.sap.corp/sap/support/notes/1969700

19999972018-07-24

35. Is the SAP HANA memory information always correct?

In general you can rely on the SAP HANA memory information, but the following exceptions exist:

Area
SAP
Note

Details

M_CONTEXT_MEMORY

Memory information for granular units like
connection and SQL statement are tracked in
M_CONTEXT_MEMORY. It can be evaluated
via SQL: "HANA_Memory_ContextMemory"
(SAP Note 1969700). This information tells you
how much statement execution specific memory
is currently allocated. This information is usually
precise and it is used as basis of memory
features like the statement memory limit. The
following exceptions exist: SAP Note 2593571
(SAP HANA <= 1.00.122.13, <= 2.00.012.02, <=
2.00.021): Wrong implicit memory booking
behavior in context of liveCache procedure calls
SAP Note 2603589 (SAP HANA <= 1.00.122.13,
<= 2.00.012.02, <= 2.00.022): Allocations in
orawstream::reserve are not properly
deallocated from context memory. SAP Note
2584388 (SAP HANA <= 1.00.122.14): SQL
cache related memory allocations may be
accounted for the context memory and so
statistics server calls (SAP Note 2147247) can
show a high context memory size although at the
same time the actual intermediate memory
allocation is rather small. SAP Note 2628153
(SAP HANA 1.00.122.16): A wrong memory
accounting can result in rising context memory
values. SAP Note 2669798 (SAP HANA <=
1.00.122.17): Wrong memory accounting in
context of MDS (SAP Note 2670064) SAP HANA
<= 2.00.024.02, 2.00.030: Wrong accounting in
config::IniParser::parse In the worst case the
wrong context memory allocation can result in
statement memory limit terminations. As a
workaround you can set the
statement_memory_limit parameter sufficiently
high to make sure that it isn't reached by the
erroneous context memory value. Existing
increased bookings can be cleaned by
terminating the related connection (SAP Note
2092196). In case of statistics server sessions a
restart is possible based on the description in
SAP Note 2584388.

With SAP HANA <= 1.00.122.13, <=
2.00.012.01, <= 2.00.020 the memory value is

M_EXPENSIVE_STATEMENTS.MEMORY_SIZ
E

2180165

67 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

incomplete and it is not reliable. With later
Revisions it represents the highest memory
utilization in an involved service.

M_SQL_PLAN_CACHE.TOTAL_EXECUTION_
MEMORY_SIZE

2124112

With SAP HANA <= 1.00.122.14 the memory
consumption of the final close operation is
captured, not the peak memory consumption of
the actual execution. Starting with SAP HANA
1.00.122.15 the peak memory consumption is
properly recorded.

36. How can I get an overview of all recent OOM situations?

Trace files may not cover all OOM situations because a trace is only written after the configured
oom_dump_time_delta (default: 1 day) is exceeded. Instead you can find an overview of OOM situations in
monitoring view M_OUT_OF_MEMORY_EVENTS (SAP HANA 1.0 >= SPS 12) or alternatively via SQL:
"HANA_Memory_OutOfMemoryEvents" (SAP Note 1969700).

Example:

--

|OOM_TIME |HOST |PORT |CONN_ID |STATEMENT_HASH |MEM_REQ_GB|MEM_USED_GB|MEM_LIMIT_GB|EVENT_REASON

|TRACEFILE_NAME|

--

|2018/01/21 14:56:37|saphana6|30003| 509002|8c9a904596ef7297c18047ae899593d4| 7.28| 199.35|

200.00|GENERIC_COMPOSITE_LIMIT| |

|2018/01/21 14:56:38|saphana6|30003| 509002|8c9a904596ef7297c18047ae899593d4| 7.27| 199.38|

200.00|GENERIC_COMPOSITE_LIMIT| |

|2018/01/21 14:56:40|saphana6|30003| 509002|8c9a904596ef7297c18047ae899593d4| 7.26| 199.45|

200.00|GENERIC_COMPOSITE_LIMIT| |

|2018/01/21 14:56:43|saphana6|30003| 509002|8c9a904596ef7297c18047ae899593d4| 7.27| 199.57|

200.00|GENERIC_COMPOSITE_LIMIT| |

|2018/01/21 14:56:44|saphana6|30003| 509002|8c9a904596ef7297c18047ae899593d4| 0.50| 199.96|

200.00|GENERIC_COMPOSITE_LIMIT| |

|2018/01/22 14:14:19|saphana5|30003| 408089|ea8afb5aed39f133e5f593dfaed1828b| 0.00| 200.00|

200.00|GENERIC_COMPOSITE_LIMIT| |

|2018/01/23 17:28:35|saphana6|30003| 508413|0450975123f2a81eb26a1ebc06f819cf| 3.21| 197.64|

200.00|GENERIC_COMPOSITE_LIMIT| |

|2018/01/24 11:37:24|saphana6|30003| 416809|d589b47003b8db3caf9425ebfaf5b72e| 11.06| 189.43|

200.00|GENERIC_COMPOSITE_LIMIT| |

--

37. Is SAP HANA aware about dynamic memory changes?

If you adjust the amount of physical memory while SAP HANA is up and running, SAP HANA won't
automatically consider the new size. To avoid issues you can manually adjust memory related parameters
like global_allocation_limit and allocationlimit or synchronize memory adjustments with times of SAP HANA
restarts.

38. Are all SAP HANA services part of the memory management?

No, not all SAP HANA services (SAP Note 2477204) are covered by the memory management. Exceptions
are:

daemon•

68 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

https://i7p.wdf.sap.corp/sap/support/notes/1969700
https://launchpad.support.sap.com/#/notes/2477204

19999972018-07-24

esserver•
etsserver•
rdsyncserver•
streamingserver•
xscontrol•
xsexecagent•
xsuaaserver•

As a consequence values in memory related monitoring views may be missing or having unexpected values
(e.g. -1 for the process allocation limit).

Keywords

SAP HANA memory heap allocator table row column store oom out of memory

Products

SAP HANA, platform edition all versions

This document refers to

SAP
Note/KBA

Title

2670064 FAQ: SAP HANA Multi-Dimensional Services (MDS)

2600076 FAQ: SAP HANA Inverted Individual Indexes

2600030 Parameter Recommendations in SAP HANA Environments

2593571 FAQ: SAP HANA Integrated liveCache

2573880 FAQ: SAP HANA Full System Info Dump

2570371 FAQ: SAP HANA Execution Engine (HEX)

2520774 FAQ: SAP HANA Performance Trace

2506811 FAQ: SAP HANA Dynamic Result Cache

2502256 FAQ: SAP HANA Caches

2477204 FAQ: SAP HANA Services and Ports

2470289 FAQ: SAP HANA Non-Uniform Memory Access (NUMA)

2467292 memAllocSystemPages failed with rc=12 - Cannot allocate memory

2453348 Out of Memory Occured with Large Pool/planviz/ and Pool/RowEngine/QueryCompilation

69 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

2416490 FAQ: SAP HANA Data Aging in SAP S/4HANA

2400022 FAQ: SAP HANA Smart Data Integration (SDI)

2399993 FAQ: SAP HANA Fast Data Access (FDA)

2388483 How-To: Data Management for Technical Tables

2380176 FAQ: SAP HANA Database Trace

2375917 How-To: Converting SAP HANA VARBINARY columns to LOB

2370588 S/4 migration job causes an Out Of Memory during the MUJ step on a HANA System

2349081 Datavolume increase following an upgrade to SPS09 or higher

2336344 FAQ: SAP HANA Static Result Cache

2302903 HANA PlanViz "Memory Allocated" figure is higher than the statement memory limit

2242507 HANA out of memory problem while using Smart Data Access

2222718 Troubleshooting HANA High Memory Consumption - Guided Answers

2222277 FAQ: SAP HANA Column Store and Row Store

2222250 FAQ: SAP HANA Workload Management

2222218 FAQ: SAP HANA Database Server Management Console (hdbcons)

2222200 FAQ: SAP HANA Network

2220627 FAQ: SAP HANA LOBs

2180165 FAQ: SAP HANA Expensive Statements Trace

2180119 FAQ: SAP HANA Smart Data Access

2177604 FAQ: SAP HANA Technical Performance Optimization Service

2169283 FAQ: SAP HANA Garbage Collection

2160391 FAQ: SAP HANA Indexes

2159014 FAQ: SAP HANA Security

2154870 How-To: Understanding and defining SAP HANA Limitations

2147247 FAQ: SAP HANA Statistics Server

2143679 How-To: Removing Primary Keys of SAP HANA Statistics Server Histories

2142945 FAQ: SAP HANA Hints

2127458 FAQ: SAP HANA Loads and Unloads

2124112 FAQ: SAP HANA Parsing

70 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

2122650 Hana Server Crashes with 'Composite limit violation (OUT OF MEMORY) occurred' in SPS 08

2119087 How-To: Configuring SAP HANA Traces

2116157 FAQ: SAP HANA Consistency Checks and Corruptions

2114710 FAQ: SAP HANA Threads and Thread Samples

2112604 FAQ: SAP HANA Compression

2109355 How-To: Configuring SAP HANA Inverted Hash Indexes

2101244 FAQ: SAP HANA Multitenant Database Containers (MDC)

2100009 FAQ: SAP HANA Savepoints

2092196 How-To: Terminating Sessions in SAP HANA

2088971 How-To: Controlling the Amount of Records in SAP HANA Monitoring Views

2081869 How to handle HANA Alert 64: 'Total memory usage of table-based audit log'

2081591 FAQ: SAP HANA Table Distribution

2081473 HANA Resident Memory : High Memory Usage

2073964 Create & Export PlanViz in HANA Studio

2057046 FAQ: SAP HANA Delta Merges

2050579 How to handle HANA Alert 68: 'total memory usage of row store'

2044468 FAQ: SAP HANA Partitioning

2000003 FAQ: SAP HANA

2000002 FAQ: SAP HANA SQL Optimization

1999998 FAQ: SAP HANA Lock Analysis

1999993 How-To: Interpreting SAP HANA Mini Check Results

1999930 FAQ: SAP HANA I/O Analysis

1999880 FAQ: SAP HANA System Replication

1998599 How-To: Analyzing high SAP HANA Memory Consumption due to Translation Tables

1984422 How-To: Analyzing SAP HANA Out-of-memory (OOM) Dumps

1977269 How to handle HANA Alert 45: 'Check memory usage of main storage of column-store tables'

1977268 How to handle HANA Alert 40: 'Total memory usage of column-store tables'

1977207 How to handle HANA Alert 55: Columnstore unloads

1977101 How to handle HANA Alert 12: 'Memory usage of name server'

71 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

1900257 How to handle HANA Alert 43: 'Memory Usage of Services'

1899511 How to handle HANA Alert 44 'Licensed Memory Usage'

1898317 How to handle HANA Alert 1: ‘Host physical memory usage’

1862506 HANA: Statisticsserver runs out of memory (OOM) as of SPS05

1847202
Error "400 Bad Request" when executing EPM Add-in report with a big amount of dimension members
to be retrieved - BPC NW

2669798 Query Execution Leads to an Out of Memory Situation

2643641 DPServer Memory Utilization

2637828
Memory Leak on Pool/malloc/libhdbbasement.so When Collecting Performance Trace/Planviz/Plan
Trace with Function Profiler

2629536 Unexpected Composite OOM Errors Caused by Setting Total Statement Memory Limit

2628153 Unexpected Composite Out of Memory Event Occurs Frequently

2624305 Potential Memory Leakage on Pool/malloc/libhdbcswrapper.so

2612205 HANA Indexserver Cannot Load Row Store Tables Because of OOM

2612022 Increased Memory Allocator Size After Distributed Query Execution Failed due to OOM

2603589 Composite OOM in orawstream::reserve

2601475 Memory Leak in Pool/malloc/libhdbcsapi.so When Running Enterprise Search Queries

2599658
Increased Version Count or Data Volume Size and Memory Consumption Increase due to Dangling
Transtoken

2597818 Memory Leak in Pool/ESX When Using PlanViz Execution

2588395
Erroneous Accounting of Shared Memory in Multitenant Database Container Systems Running in High
Isolation Level on Linux

2584388
High Memory Usage in Allocator Connection/XXXXXX/Statement/YYYYYYYY/IMPLICIT by User
_SYS_STATISTICS

2583148 Higher garbage memory build up in SAP HANA due to TMA application

2573738
Rowstore Versions are not Collected on System Replication Target Site When Using Operation Mode
Logreplay

2547516 Consistency Check Execution Causes Growth of Pool/malloc/libhdbbasement.so

2542700 DPServer memory utilization continues to climb when processing cluster tables

2535110 Memory Leak on Pool/parallel/compactcol and Pool/parallel/aggregates or Pool/itab

2533352 Memory Leak on "Pool/JoinEvaluator/JERequestedAttributes/Results"

2532199 Optimization of the HANA Memory Allocator Pool/Statistics Usage

72 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

19999972018-07-24

2527251 Memory Leak in Pool/RowEngine/QueryCompilation

2517443
Filter push down missing for TREXviaDBSL calls on Hana native calculation view when FEMS are
used

2497016
Pages Belonging to Cold Partitions Created With Paged Attribute Are Not Unloaded by The Resource
Manager if They Are Pinned by an Inverted Index

2488924 Linux: Recommended values for maximum stack size of processes

2458491 Unloads of Recently Columns Despite Older Columns Could be Evicted

2415279 How-To: Configuring SAP HANA for the SAP HANA Extension Node

2405763 SAP HANA DB: Log Replay on HSR Secondary Site Hangs

2371445 SAP HANA SPS 12 Database Maintenance Revision 122.03

2312983 Memory leak in Pool/parallel/aggregates when querying on distributed environment

2146989 SAP HANA: High Number of Persistent Pages of Type UnifiedTableMVCC

1993128 SAP HANA: column store table unloads and unloading behavior of Memory Objects Container

1980765 Operations with columns containing only one value may lead to wrong data

1969700 SQL Statement Collection for SAP HANA

1900823 SAP HANA Storage Connector API

1871386 SAP HANA: Paged Attributes

1865554 MDX: Access type F4 help / improved error update

1813245 SAP HANA DB: Row store reorganization

SAP HANA Troubleshooting and Performance Analysis Guide

SAP HANA Administration Guide

ABAP Sourcecode Search

Simplification List for SAP S/4HANA

Information Lifecycle Management

73 of© 2018 SAP SE or an SAP affiliate company. All rights reserved 73

